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Abstract

The COVID-19 pandemic is challenging nations with devastating health and economic

consequences. The spread of the disease has revealed major geographical heterogene-

ity because of regionally varying individual behaviour and mobility patterns, unequal

meteorological conditions, diverse viral variants, and locally implemented non-pharma-

ceutical interventions and vaccination roll-out. To support national and regional authori-

ties in surveilling and controlling the pandemic in real-time as it unfolds, we here develop

a new regional mathematical and statistical model. The model, which has been in use in

Norway during the first two years of the pandemic, is informed by real-time mobility esti-

mates from mobile phone data and laboratory-confirmed case and hospitalisation inci-

dence. To estimate regional and time-varying transmissibility, case detection

probabilities, and missed imported cases, we developed a novel sequential Approximate

Bayesian Computation method allowing inference in useful time, despite the high

parametric dimension. We test our approach on Norway and find that three-week-ahead

predictions are precise and well-calibrated, enabling policy-relevant situational aware-

ness at a local scale. By comparing the reproduction numbers before and after lock-

downs, we identify spatially heterogeneous patterns in their effect on the transmissibility,

with a stronger effect in the most populated regions compared to the national reduction

estimated to be 85% (95% CI 78%-89%). Our approach is the first regional changepoint

stochastic metapopulation model capable of real time spatially refined surveillance and

forecasting during emergencies.
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Author summary

National and regional governments have imposed restrictions on their citizens to control

the spread of the SARS-CoV-2 virus, which caused disruption of their lives. This pan-

demic has been geographically and temporally extremely complex and heterogeneous, dif-

ficult to understand and predict. Important decisions assumed homogeneity across local

communities, regions and time, because of a lack of instruments to rapidly capture

regional and temporal differences. We present a complete probabilistic model to estimate

regional processes in space and time, focussing on operational usefulness in real time. It

uses real-time mobile phone mobility data, laboratory-confirmed cases, data on cases

imported from abroad, and hospitalisation incidence. We propose a new calibration

method to estimate regional reproduction numbers, which handles the high dimensional

parameter space. The model has been successfully used for local situational awareness and

forecasting in Norway, contributing to one of the most successful handlings of the epi-

demic in Europe. We estimate both national and region-specific reduction effects of the

lockdown. We find larger reduction effects in the more populous regions compared to the

national average, where we estimate a reduction of 85% in the transmissibility (95% CI

78%-89%).

Introduction

The COVID-19 pandemic has led to an unprecedented global crisis. Health authorities world-

wide are continuously striving to effectively mitigate the disease spread, balancing the protec-

tion of health with social and economic costs. In most countries, the disease spread is

characterised by significant geographical and temporal heterogeneity, requiring local tailoring

of interventions. Therefore, time-sensitive information about the regional conditions becomes

essential to management.

Mathematical modelling has been influential for preparedness planning and decision-mak-

ing [1–6]. Most of the published COVID-19 models are at national scale and when at regional

level they do not account for inter-regional mobility [7–11].

We developed a real-time spatio-temporal SARS-CoV-2 metapopulation model for assess-

ment, monitoring, and short-term prediction, to inform regional and national policy deci-

sions. The model exploits mobile phone mobility data and is calibrated to region-specific daily

hospital incidence and laboratory-confirmed cases using a new sequential Monte Carlo

Approximate Bayesian Computation (SMC-ABC) [12] which we call the Split-SMC-ABC.

Norway is among the countries with the lowest COVID-19 death rate in Europe [13]. The

disease spread in Norway is characterised by continuous high circulation in Oslo and the

densely populated areas surrounding the capital, and spatially shifting outbreaks in the

remainder and less occupied regions of the country. Before vaccination, the Norwegian mitiga-

tion strategy focussed on early detection, isolation, and municipality-based contact tracing,

supported by national contact tracing teams, for rapid quarantining of contacts. Norway

experienced its first confirmed SARS-CoV-2 cases in February 2020, followed by a rapid accel-

eration of cases. On March 12, 2020, the Norwegian government enforced a nationwide lock-

down [14], succeeded by border closure [15] and internal travel restrictions [16]. In the

following months, the measures were gradually removed. The epidemic resurged in the

autumn and winter, leading to new national restrictions [17–19] and many locally targeted

interventions [20–22].
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By including geography in our transmission model, we can provide surveillance indicators

and predictions on a regional level which can take into account different interventions in dif-

ferent regions. Regional estimates are essential for local decision making, but they arise from a

much more difficult high-dimensional estimation task. Our proposed calibration method has

been designed to handle the increasing number of parameters over time, so to provide timely

estimates of key model-derived indicators, including reproduction numbers for situational

awareness, and prediction of future hospital and intensive care unit admissions.

Although our model is tailored to the management of the early COVID-19 epidemic, it

remains applicable as a situational awareness tool during vaccination roll-outs. The methodol-

ogy can be applied to other countries and settings, and tailored to other infectious diseases

where regional indicators need to be inferred as the epidemic unfolds.

In this study, our objective was three-fold: (i) to present the new regional model and our

inferential method, (ii) to report on the weekly epidemiological situation during 2020–2021 in

Norway, where the model was used to inform real-time policy decisions, and (iii) to compare

and validate our modelling approach. The article is organised in the following way. First, we

provide a technical presentation of our regional model, including a model for using real-time

mobility data, and a novel split-ABC-SMC inference technique. In the result sections, we doc-

ument the implementation of the model with Norwegian data and report on county-specific

effective reproduction numbers, alongside national results obtained from an alternative model

(“null model”), excluding regional differences in the transmissibility. We present short-term

forecasting results of hospital admissions and test data for the counties, obtained at different

pandemic stages, covering highly volatile and relatively stable periods. Finally, we document

the enhanced predictive performance of the regional model by comparing its projections to

those obtained from a national null model and a simple regional model forecasting from the

past two-weeks data.

Materials and methods

Ethics statement

The ethical approval for the use of data in this article was given under the Norwegian Health

Preparedness Act, paragraphs 2–4, more information is available at https://www.fhi.no/en/id/

infectious-diseases/coronavirus/emergency-preparedness-register-for-COVID-19/.

Case data

This study utilises different COVID-19 data sources. Beredskapsregisteret for COVID-19

(Beredt C19) gathered all the Norwegian COVID-19 data and made it available for use. In

Norway, the use of a unique personal identifier makes it possible to link different data sources.

We obtained anonymised individual-level hospital incidence data from the Norwegian Inten-

sive Care and Pandemic Registry (NIPaR). This data set included all patients admitted within

14 days of a positive laboratory test or diagnosed with COVID-19 in the discharge report, by

April 12, 2021. The data set contained age, residence region, date of hospitalisation, date of

entering mechanical respirator, and discharge dates from both mechanical respirator and hos-

pital. NIPaR was merged with data from the Norwegian Surveillance System for Communica-

ble Diseases (MSIS), which comprises data on all notifiable infectious diseases in Norway,

including COVID-19. The MSIS data included age, whether the patient was infected abroad or

in Norway, date of positive test, and date of symptom onset for all COVID-19 cases. We used

the data both to calibrate the transmissibility in the model and to estimate the hospitalisation

parameters.
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We obtained data from MSIS on the number of negative SARS-CoV-2 tests by region from

April 1, 2020, when the reporting commenced. In this data set, negative tests within seven days

of a previous negative test were excluded.

In the calibration, we use county level resolution of the surveillance data. An overview of

the 11 counties in Norway is provided in Fig 1. The counties are further divided into 356

municipalities, but in the case of Norway we have chosen to simulate on the county level. In

the paper, we will use the term region when we refer to the general model and methodology,

and county when we refer to the case of Norway.

Mobility data

The geographical spread of COVID-19 is governed by movements of infectious individuals.

We used mobile phone mobility data from the operator Telenor Norway as a measure of

mobility of individuals between municipalities in real-time. Every mobile phone is continu-

ously connected to a cell tower and switches from one tower to another as it moves between

Fig 1. Norwegian geography. Overview of Norway’s 11 counties. The map was made using an open-source shape file

with License Creative Commons BY 40 (CC BY 4.0) from Kartverket (https://kartkatalog.geonorge.no/metadata/

administrative-enheter-fylker/6093c8a8-fa80-11e6-bc64-92361f002671), and background from OpenStreetMap

overview (https://www.openstreetmap.org).

https://doi.org/10.1371/journal.pcbi.1010860.g001
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their areas of connectivity. The geographical location of the connected cell tower provides an

approximate location of the phone, and therefore of its owner. For every six-hour time period,

each individual subscriber of the mobile operator was assigned to the municipality most

recently visited in the last two hours of the six-hour time window. An individual had moved

from municipality i to municipality j if they were in i during the last two hours of one six-hour

period and in j in the final two hours of the next six-hour period. The population travel pat-

terns were then described by counting how many subscribers transitioned between any pairs

of municipalities, during two consecutive six-hour periods. This represents an origin-destina-

tion mobility matrix. Each mobility matrix contains aggregated counts of people travelling,

anonymised by aggregation in space and time. There are no individual identifiers in the data.

The counts in the generated mobility matrices were further up-scaled by a factor representing

the overall Telenor Norway market share, estimated at 47.5% in 2019 [23]. As a final privacy-

preserving precaution, counts below 20 in the mobility matrices were censored to prevent

potential re-identification of individuals or small groups of people. The cell tower network also

connects to every device and handset in the mobile operator’s network. To focus only on peo-

ple movements, we have filtered out devices (IoT/M2M) that are not likely to be carried by an

individual.

The time series of mobility matrices covered the period from the first confirmed case in

Norway up to April 1, 2021. In this way, the model was informed by real-time mobility pat-

terns since the first confirmed case in Norway. We utilised actual mobility data when simulat-

ing the past. In this way, alterations in the mobility patterns as a response to interventions,

seasonality, or other causes, were automatically incorporated in our model predictions. While

the mobile phone mobility data was on municipality level, we aggregated the data to county

level in the simulations.

The model used a regularised version of the mobility matrix of the most recent non-holiday

weekday when predicting future events. First, the four mobility matrices for the given weekday

were averaged, i.e. the four six-hourly matrices for each 24 hour-interval. Then an optimisa-

tion was performed to obtain the closest matrix that preserved population. The technical

details of the regularisation is provided in S1 Text, section S1.1. The regularisation dates used

in the predictions are provided in S1 Text, Table A.

Regional transmission model

A regional metapopulation model was defined to describe the spread of COVID-19 in space

and time. The model was an extension of the SEIR metapopulation model [24] and consisted

of three layers: (i) the population structure in each region, based on census data (in the case of

Norway from Statistics Norway [25]), (ii) a dynamic network of movements describing the

travel patterns between regions (using the Telenor mobility matrices), and (iii) a local trans-

mission model within each region.

The population was initialised according to data on population sizes for the regions (for

Norway in January 2020 [25]). Each individual in the model then had a designated home loca-

tion. To model the disease spread, the individuals first mixed in their current location for six

hours. Then, the individuals travelled according to the mobility matrices, and then mixed

again in their new location for six hours. When we implemented the travel from location i to j,
we preferentially sent back the individuals with home location j who were visitors in location i.
If more people travelled from i to j according to the mobility matrices than those from j cur-

rently in i, we sent individuals who belonged to i and were currently present in location i. If

this was still not enough, we sent to j other visitors in i, who belonged to other regions. In this

way, the virus could spread from one region to another, for example by an individual travelling
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from a susceptible location to an infected location, acquiring the infection, and then travelling

back. We preferentially sent individuals back to their home location, keeping track of where

they came from, in order not to overestimate the spread [26]. We moved individuals indepen-

dently of their disease status (i.e. using a multinomial distribution with probabilities based on

proportions of individuals in each state). Another option would have been to decrease the

probability of travel for e.g. the infectious symptomatic, however we have chosen not to do

this, as it would still require ad hoc assumptions on the size of the decreased travel probability.

In Norway, local mobility and commuting were of primary importance. The number of

infected individuals in a municipality thus changes both with the disease dynamics between

each six-hour period, and due to mobility between locations every sixth hour. The local rules

which we here adopted can be changed in other situations and countries. In S1 Text, Section

S2.7 we provide a sensitivity analysis to the mobility rules used and show that the outcomes are

in general robust to the different mobility rules studied.

Local stochastic epidemiological model. For each time interval, we assumed homoge-

neous mixing among the individuals present within each region. We assumed that the individ-

uals could be in one out of six states: susceptible (S), exposed and not infectious (E1),

presymptomatic and infectious (E2), infectious symptomatic (I), infectious asymptomatic (Ia),
or recovered (R). The additional compartments were included to better fit the epidemiology of

COVID-19 transmission. Multiple studies indicate the importance of presymptomatic trans-

mission [5, 27, 28] and asymptomatic infection [29]. We implemented the transitions between

the states for individuals currently in location i by stochastic difference equations:

Siðt þ dtÞ ¼ SiðtÞ � Y1ðtÞ; ð1Þ

Ei
1
ðt þ dtÞ ¼ Ei

1
ðtÞ þ Y1ðtÞ � Y2ðtÞ; ð2Þ

Ei
2
ðt þ dtÞ ¼ Ei

2
ðtÞ þ Y3ðtÞ � Y4ðtÞ; ð3Þ

Iiðt þ dtÞ ¼ IiðtÞ þ Y4ðtÞ � Y5ðtÞ; ð4Þ

Iiaðt þ dtÞ ¼ IiaðtÞ þ Y2ðtÞ � Y3ðtÞ � Y6ðtÞ: ð5Þ

The stochastic transitions between the states were

Y1ðtÞ � BinomðSiðtÞ; bi
tdt=N

i
t � ðI

iðtÞ þ rIa I
i
aðtÞ þ rE2

Ei
2
ðtÞÞÞ;

Y2ðtÞ � BinomðEi
1
ðtÞ; l1dtÞ;

Y3ðtÞ � BinomðY2ðtÞ; ð1 � paÞÞ;

Y4ðtÞ � BinomðEi
2
ðtÞ; l2dtÞ;

Y5ðtÞ � BinomðIiðtÞ; gdtÞ;

Y6ðtÞ � BinomðIiaðtÞ; gdtÞ:

Here, b
i
t is the probability of transmission upon a contact times the contact rate, rIa is the rela-

tive infectiousness of the asymptomatic, rE2
is the relative infectiousness of the presymptom-

atic, 1/λ1 is the latent period, pa is the probability of being an asymptomatic carrier, 1/λ2 is the
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presymptomatic period, 1/γ is the infectious and asymptomatic infectious period, assumed

equal, and δt is the time step of the model, set to six hours in our setting. We had one set of

equations for each region i. The per-compartment counts Si, Ei
1
, Ei

2
, Ii, Iia, and Ri are the num-

ber of individuals in each compartment who are currently present in the region. For the trans-

mission parameter b
i
t , the subscript denotes time-dependence, as we assumed it to be a step-

function, changing at different pre-specified changepoints. The superscript indicates region, as

we allowed different transmissibility for each region. Ni
t is the number of individuals present at

time t in the region i, hence

Ni
t ¼ Ni

t� 1
þ
X

j6¼i

Xt
ij �

X

j6¼i

Xt
ji;

where Xt
ij denotes the number of people moving from location i to location j between time t

and time t + 1.

We do not provide the equation for Ri(t), the number recovered, as we assumed constant

population sizes.

By calculating the largest eigenvalue for the next generation matrix of the corresponding

deterministic system of differential equations [30], we find an equation for the basic reproduc-

tive number R0 of our epidemiological model, given by

R0 ¼ b0 � ðð1 � paÞ=gþ parIa=gþ ð1 � paÞrE2
=l2Þ: ð6Þ

We calculated the effective reproduction numbers by multiplying the estimated reproduc-

tion number (given by the estimated b
i
t instead of β0 in Eq 6) by the estimated mean propor-

tion susceptible in the corresponding period. We chose to put our prior distributions on the

reproduction numbers instead of the b
i
t , as we had a better understanding of their size. Then

we reversed Eq 6 to calculate the b
i
t from the reproduction numbers.

We calibrated two different models for the transmissibility. In one model, we assumed the

same transmissibility in all counties, hence estimated national reproduction numbers. In the

second model, we allowed county-specific transmissibility parameters and hence region-spe-

cific reproduction numbers.

Note that the disease spread model has a time resolution of six hours, while all the surveil-

lance data have a daily resolution. We therefore only used every fourth time step of the model

when comparing to data, corresponding to 24-hours between each simulated value.

Changepoint specification. For Norway, we estimated the first changepoint nationwide

between March 12, 2020 and March 16, 2020 which was when the first national lockdown was

imposed. The best fit was for March 15, 2020, see S1 Text, Section S2.4. The second change-

point was set on April 20, 2020, when the kindergartens reopened nationwide. After that, the

regional changepoints were set when there were changes in regional policies. In addition, we

included further changepoints to capture other potential gradual changes in behaviour or viral

properties like the gradual takeover by the more transmissible alpha variant in winter 2021

and potential compliance fatigue with restrictions over time. For example, new viral variants

are typically more transmissible, requiring changepoints in our model for the reproduction

number to capture the change in transmissibility. See for example [31] for evidence of

increased transmissibility of the alpha variant in Norway compared to the previously circulat-

ing Norwegian variants.

Importation of the virus. We seeded the epidemic with the known infected cases

imported from abroad, and located them in their county of residence. As we expect that some

imported cases went undetected, we imported an additional random, Poisson distributed

number of cases for each observed imported case, with mean estimated from the data during
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calibration. For Norway in this paper we calibrated this amplification factor between February

17, 2020 and April 1, 2021.

Model for admission to hospital and intensive care

Based on the estimated incidence in each region obtained from the spatial metapopulation

model, we modelled the number of individuals admitted to the hospital. In the model assum-

ing a common, national transmissibility, we used a binomial distribution with hospitalisation

probabilities provided in S1 Text Table B. In the model with region-specific transmissibilities,

we instead used a 28-days moving average of the daily estimated hospitalisation risk. We use a

moving average because the daily hospital admission data were prone to randomness and

noise. This means that in the model with a national transmissibility, we assumed hospitalisa-

tion risks constant every calendar month, while when we modelled transmissibility regionally

we assumed smoothed daily hospitalisation risks. It would be straightforward to also include

daily moving averages in the national hospitalisation model. When simulating, once an indi-

vidual was selected to be sent to hospital, we generated the delay from onset of symptoms to

hospitalisation and the length of stay in hospital from two negative binomial distributions. For

Norway, we estimated these parameters from individual-level registry data.

The hospitalisation risks were based on the age-specific estimated hospitalisation probabili-

ties in [32]. Even though the compartmental model did not have age compartments, we needed

to consider age when computing hospitalisations, as the probability of requiring hospitalisa-

tion was highly dependent on age. We corrected the hospital admission probabilities to

account for age-dependencies in transmission, by adjusting for the age distribution of the posi-

tive cases. For the period where we do not use the test data (prior to May 1, 2020), we com-

puted the probability of hospitalisation by taking into account the demographic age profile in

each region. The details on the delay distributions and hospitalisation risks are provided in S1

Text, Section S1.2.

Laboratory-confirmed cases

To calibrate to the observed number of laboratory-confirmed cases, we simulated the number

of infected individuals detected by testing (positive test cases). We assumed that the daily num-

ber of positively tested cases could be modelled as a binomial process of the simulated daily

total incidence of symptomatic and asymptomatic cases, with detection probability π(t). We

also assumed a delay d between entering the infectious symptomatic or asymptomatic class

and a positive test. In order to make the hospitalisation data and the test data consistent, we

needed to capture the changes in test criteria, and we chose to model this in the detection

probability π(t), as

pðtÞ ¼ expðp0 þ p1 � ktÞ=ð1þ expðp0 þ p1 � ktÞÞ;

where kt in day t is a 7-days backwards moving average of the total number of tests performed

(with both positive and negative results), and π0 and π1 are two parameters that we estimated,

assuming π1 > 0.

In Norway, the testing criteria and capacity have changed significantly since early in the

epidemic. Therefore, we only calibrated to the test data from May 1, 2020. The resulting esti-

mated detection probability is shown in Fig 2. We see that it was increasing until autumn

2020, before becoming more stable.

Note that this is a very simple model. For example, one may argue that the probability of

detecting a positive case should also depend on the total number infected, not only through

the total number of tests. However, without additional and more specific data able to inform
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about the detection probability (e.g. seroprevalence data), we were not able to estimate addi-

tional parameters.

Assumptions on model parameters

The parameters related to the natural history of COVID-19 were assigned fixed values or dis-

tributions based on the literature. We based the natural history parameters on estimates from

[5], with an adjustment of the presymptomatic period based on [28]. Specifically, we assumed

a latent period that was exponentially distributed with expected duration of three days, a pre-

symptomatic period that was exponentially distributed with expected duration of two days, an

infectious period (time in I and Ia) that was exponentially distributed with expected duration

of five days, a probability of asymptomatic infection of 40%, a relative infectiousness of pre-

symptomatic of 1.25 compared to the infectiousness in I which is 1, and a relative infectious-

ness of 0.1 of the asymptomatic cases. Our assumptions are also in agreement with [33], who

found an incubation period for COVID-19 of 5.1 days. A complete overview of the parameter

choices is provided in S1 Text, Table C.

Calibration

In the model for Norway with a single national transmissibility, we estimated the transmissibil-

ity parameters βt between given changepoints, the parameters π0, π1, in the expression for the

detection probability, the delay d between entering the infectious symptomatic or asymptom-

atic class and a positive test, and the amplification factor for the imported cases. As of April 1,

2021, this resulted in 19 nationally estimated parameters because of 14 changepoints in the

transmission. In the model with regionally varying transmission parameters b
i
t , we calibrated

these region-specific transmissibility parameters instead of national ones. For Norway, as of

April 1, 2021, we used in total 94 regional transmissibility parameters, corresponding to fewer

changepoints per region than for the national model, as this is a much more difficult estima-

tion problem. For the same reason, we first estimated the amplification factor, π0, π1, and d in

Fig 2. Detection probability. Estimated probability to detect a case by testing.

https://doi.org/10.1371/journal.pcbi.1010860.g002
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the national calibration and then used the obtained posterior distributions of these parameters

as priors for the same parameters in the regional calibration. The assumed prior distributions

for the other parameters are provided below.

We developed a new sequential Monte Carlo version of Approximate Bayesian Computa-

tion (SMC-ABC) to estimate the parameters of our model. The idea of ABC is to identify

parameters that produce simulated data that are close to the observed data, measured in some

distance. We used the least squares between the simulated regional daily hospital incidence

and the observed regional daily hospital incidence, summed over all the regions. Similarly, we

calculated the sum of the least squares distance between the observed and simulated test inci-

dence by region.

This, however, was not sufficient to give good results in all regions, because transmission

was uneven across regions. More populous and densely populated regions tend to experience

more cases than smaller and less urban regions. Therefore, in the regional calibration, we com-

puted a vector of multiple distances, one for the sum of the larger/more densely populated

regions and one with the sum of the distances for all other regions. In this way, as all compo-

nents of this vector were minimised in the calibration, resulting in an overall good fit, not only

in the regions with most cases. If all regions would instead have been fitted together using one

common error measure, the regions with most cases would dominate, because of their largest

contribution to the least square sum. In SMC-ABC [12], the parameters are calibrated in sub-

sequent rounds, where the distance between simulated and observed data decreases in each

round. We thus used four separate tolerances for the distances, ensuring that they all dimin-

ished in each round: hospitalisation incidence in the largest regions, hospitalisation incidence

for the rest of the regions, laboratory-confirmed cases in the largest regions, and laboratory-

confirmed cases in the rest of the regions. In Norway, infection rates have been consistently

high in the densely populated region of Oslo and the neighbouring populous Viken region,

and we therefore used a separate tolerance measure for these two regions combined.

In the first round, we started with pre-specified thresholds for the distances, and a prior for

all the parameters. Candidate parameter values were drawn from the prior, and we simulated

the hospitalisation and positive test time series for each region using these candidate parame-

ters. We accepted the candidate parameters if all the distances were below the pre-specified

thresholds. For all subsequent rounds, each threshold was chosen as the 0.80-quantile of the

distances produced by the accepted parameters in the previous round. Candidate parameters

were then sampled from the set of chosen parameters from the last round using importance

weights. To add further exploration, these candidate parameters were perturbed with a multi-

variate normal distribution with covariance matrix equal to the empirical covariance matrix of

the parameters retained in the previous round. We obtained 1000 parameter sets in each

round when we calibrated the regional parameters, 200 when we calibrated the national

parameters. This pipeline is summarised in Algorithm 1, see also [24]. In the algorithm, the

observed hospital incidence data are denoted by H and the observed positive tests as T. The

corresponding simulated hospital incidence is denoted by H0 and the simulated positive tests

as T0, and ��7 denotes a 7-days backwards moving average. Subscript OV denotes that the error

is calculated for Oslo and Viken (the largest regions), while −OV means all counties except

Oslo and Viken. The algorithm was almost the same for the national calibration, except that

we calculated the errors for the simulations aggregated over regions and compared it to the

nationally aggregated data. Hence there were only two thresholds for the national algorithm,

one for the hospitalisation incidence and one for the test data.

For the test data, we chose to use a 7-days backwards moving average for the covariate kt,
and for the observed number of positive tests and the simulated number of positive tests when
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calculating the distance. This was done to take into account potential day-of-the-week-effects

and allowed for less day-to-day variance than when using the daily data directly.

Algorithm 1 ABC-SMC
Initialise:
Set a starting value �

hOV
0 , �

h� OV
0 , �

tOV
0 , �

t� OV
0 for the tolerances for the

hospitalisation data in the largest regions and for the rest of the
regions, and test data in the largest regions, and the rest of the
regions, respectively, r = 1 and w1 = (1, . . ., 1).
set i = 0.
while i < 1000 do
if r = 1 then
sample parameters θi from the prior π.

else
Sample θp from θr−1 with weights wr−1.
Propose θi from a normal distribution N centred at θp with variance

equal to the empirical variance from the previous round.
If π(θi) = 0, sample a new θp.

Run the model with θi, providing the simulated number of hospitalised
cases H0, and positive tested T0.
if f hðHOV0;HOVÞ ¼ jjHOV0 � HOVjj2 < �hOVr and f hðH� OV0;H� OVÞ ¼ jjH� OV0 � H� OVjj2 < �h� ovr ,

f tðTOV0;TOVÞ ¼ jj
�T 07OV �

�TOV
7jj

2
< �tOVr and f tðT� OV0;T� OVÞ ¼ jj

�T 07
� OV �

�T � OV
7jj

2
< �t� OVr , then

set θr
i ¼ θi, and calculate weights wr

i for the parameters, as

wr
i ¼

1; if r ¼ 1;

pðθiÞPn
j¼1

wr� 1
j Nðθijθ

r� 1

j Þ
; otherwise;

8
><

>:

Increment i = i + 1.
else
sample a new θp.

normalise the weights as wr
i ¼

wr
iP
j
wr
j
.

set �
hOV
rþ1 to the 80th percentile of f hðHOV0;HOVÞ for the accepted

parameters.
set �

h� OV
rþ1 to the 80th percentile of f hðH� OV0;H� OVÞ for the accepted

parameters.
set �

tOV
rþ1 to the 80th percentile of f tðTOV0;TOVÞ for the accepted

parameters.
set �

t� OV
rþ1 to the 80th percentile of f tðT� OV0;T� OVÞ for the accepted

parameters.
Increment r = r + 1.

Concerning the prior distribution, we assumed an independent normal prior for all the var-

iables except the delay between entering the infectious symptomatic or asymptomatic class

and a positive test, which was assumed to be a uniform integer between 0 and 4 days. For the

reproduction numbers, we used the same prior mean and variance for all the regions. For Nor-

way, the mean was assumed to be 3.7 with variance 0.4 for R0, and 1.0 with variance 0.25 for

the other reproduction numbers. For the amplification factor, we assumed a mean of 1.3 and a

variance of 0.25. The priors for R0 and the amplification factor were based on early assessments

of hospital prevalence data for Norway. For π0 and π1, we assumed mean 0 and variance 4.0

and 25 � 10−9, respectively. We truncated the normal distribution at 0 for the reproduction

numbers, amplification factor, and π1.

PLOS COMPUTATIONAL BIOLOGY A real-time regional model for COVID-19

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010860 January 23, 2023 11 / 26

https://doi.org/10.1371/journal.pcbi.1010860


Split-SMC-ABC. The regional calibration is challenging, as it is a very high-dimensional

calibration problem. With the standard SMC-ABC, we were not able to obtain convergence in

useful time for our almost 100 parameters. Therefore, we developed a new version of the

SMC-ABC to produce reliable and timely results, which we call the Split-SMC-ABC.

The simple idea is to restrict the past reproduction numbers to the already obtained poste-

rior samples, by sampling from the past trajectories and parameters as detailed below. Hence,

all the computational time is used to estimate the most recent reproduction numbers, the key

parameters for situational awareness. However, parameters that enter the earlier part of the

epidemic model are also important, as the more recent reproduction numbers (or equivalently

b
i
t) depend on them. For example, a higher-than-average reproduction number in one period

is typically followed by a lower-than-average reproduction number in the following period, to

compensate for the high number of cases produced in the first period. In addition, the whole

history is necessary for estimating the total cumulative number of infections and hence the

immunity of the population. Therefore, since the present parameters depend on the past

parameters, we cannot treat the two calibration problems (past and present) as independent.

Instead, we ran the past until convergence and used the obtained posterior distributions of the

parameters in the past when calibrating the more recent period. Importantly, we needed to

handle the transition period between the past period and the more recent period. Here, we

exemplify the algorithm with the dates used in the simulations in this paper, but the approach

is, of course, general. We focus on the split into two parts, which we call batches. Note that this

operation can be repeated multiple times, generating multiple batches, by following the same

procedure.

We start with the first batch calibration, obtained by calibrating to all the data up to August

15, 2020. From this calibration, we obtained 1000 posterior samples of transmissibility param-

eters up to August 1 2020, π0, π1, d, and the amplification factor. We also have the 1000 corre-

sponding epidemic time series of Si, Ei
1
, Ei

2
, Ii, Iia, and Ri in each region i. The first batch

calibration contained a changepoint on August 1, 2020 in all regions. We denote this time-

point, August 1, 2020, by tcal, which was the first date of the data we wished to calibrate to in

the second batch. Hence, all the parameters prior to tcal were restricted to the sampled posteri-

ors of the first batch calibration. We also fixed the time-independent parameters π0, π1, d, and

the amplification factor to follow their posterior distribution from the first batch. In the second

batch calibration, we calibrated all transmissibility parameters entering the model after tcal.
We now focus on the transition between the two batches. For this purpose, the first batch

calibration was obtained by calibrating to data up to tcal + 15. This is important because of the

posterior dependence between consecutive transmissibility parameters. As the simulated hos-

pitalisations and laboratory-confirmed cases on tcal corresponded to simulated transmission

events that occurred a certain number of days before, it was necessary to start the simulations

a certain number of days before tcal. We chose to start the simulations at tcal − 15, as 15 days

covered approximately 90% of the expected hospitalisations in the simulations in our setting

(which are more delayed than the positive tests). Hence, we kept the 1000 calibrated trajecto-

ries (along with the corresponding calibrated reproduction numbers) from the first batch cali-

bration, up to the day tcal − 15. The simulations in the second batch were started on the exact

states (Si, Ei
1
, Ei

2
, Ii, Iia, and Ri in each region i) that were obtained in the first batch calibration,

on the date tcal − 15. When continuing one of the 1000 past trajectories from tcal − 15 to tcal,
the corresponding most recent reproduction number was used.

In the second batch, we calibrated only parameters entering the model after tcal, using all

the available data from tcal onward. In the first round r = 1, we first sampled uniformly which

of the 1000 trajectories produced in the first batch we should continue (with the corresponding
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amplification factor, π0, π1, d, and reproduction number for the first 15 days for that trajec-

tory). We continued to run with different samples of the past trajectories and the new parame-

ters from the second batch, until we had 1000 accepted parameter sets with errors lower than

the prespecified thresholds for the test data and the hospital data from tcal until the latest data

point.

For all subsequent rounds, r> 1, we first sampled which trajectory from the past period we

should run. The sampling probabilities S(p) for each past trajectory p were calculated as

SðpÞ ¼ ð1=1000þ Nr� 1ðpÞÞ=1001;

where Nr−1(p) is the number of times trajectory p was chosen in the previous round r − 1, then

normalised to sum to 1. Hence all past trajectories had non-zero probability of being chosen.

The probability of selecting a specific trajectory increased linearly with how frequently it was

accepted in the previous round. We chose to do this as it could be that certain past trajectories

were more likely, given the current data. We divided by 1001 to ensure that the probabilities

sum to 1. Then we sampled from the 1000 accepted parameter sets for the second batch from

the accepted parameter sets of the previous round in the usual way, as described in Algorithm

1.

Using the split method, we lose some of the dependence structure between the past and the

most recent reproduction numbers. We limited this effect by letting the last reproduction

number in the first batch be informed by future data in a period of 15 days after tcal. As men-

tioned, this had good motivations and worked well in practice in the case of Norway. Other

lengths of the overlap should be tested in other cases. From a theoretical point of view, it is dif-

ficult to quantify how much stochastic dependence is lost in this way.

For Norway, we used two additional temporal split points in the calibration, resulting in

four different batches. One before August 1, 2020, one between August 1, 2020 and November

5, 2020, one between November 5, 2020 and January 4, 2021, and one after January 4, 2021.

A demonstration of the calibration performance in a simple setting is provided in the S1

Text Section S2.11. Note that we have yet to investigate the theoretical convergence properties

of the method.

Regionally separate prior calibrations. We noticed that this calibration method, when

ran for a reasonable number of rounds, produced parameter estimates which typically led to

good fits for the most populated regions and/or regions with more cases. The fit was not par-

ticularly good for the regions with fewer cases.

As already mentioned, we introduced a vector of calibration distances in the SMC-ABC,

with one distance measure for the cases in large regions and one combining the rest of the

regions, by summing their distance measures. To ensure a good fit in all regions, we would

have preferred to introduce one distance measure for each region. However, it is not feasible

to work with such a high-dimensional error measure, as the probability of sampling a parame-

ter vector that improves the fit in all regions simultaneously would be very low. Hence, such a

high dimensional error measure would result in slow convergence. Therefore, we propose a

two-step version of the split-SMC-ABC for the final batch.

We first performed one separate calibration for each region. This was done using the

same disease spread model and setup as previously described, but assuming a common,

national transmissibility for all the other regions, except the one of interest. We then took

the separately calibrated transmissibility parameters for each region and used their posterior

distribution as prior distributions in the regional calibration which simultaneously cali-

brated the transmissibility for all the regions. This last step was necessary to learn the spatial

correlations, as the cases in the different regions are dependent due to the mobility between
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the regions. The algorithm for the separate calibrations for each region was the same as

the algorithm provided in Algorithm 1, except that the error was separated into the

region of interest and the rest of the regions, instead of the largest regions and the rest of the

regions.

Results

Regional reproduction numbers

The estimated regional effective reproduction numbers are provided in Table 1 for the early

part of the Norwegian pandemic, for the rest see S1 Text, Section S2.3 and Tables E-G. We

observed differences between regions, both in estimates and uncertainty. The estimates were

higher and most certain for the counties Oslo and Viken, with the largest population and with

most cases.

The lockdown effect on reproduction numbers was significantly different between regions,

with reductions ranging from 69% to 94% compared to before lockdown. After reopening

schools and kindergartens, the reduction diminished to between 77% and 88% of the pre-lock-

down setting. In Oslo, the reduction due to the lockdown was estimated to 89% (95% CI 84%-

93%), and later 80% (75%-84%) when lockdown was eased.

Table 1. Estimated reproduction numbers.

Region R0 until 03/14 R1 03/15–04/19 R2 04/20–07/31�

Viken 3.92 (2.95–4.72) 0.27 (0.09–0.47) 0.84 (0.74–0.96)

Oslo 5.11 (4.44–5.85) 0.54 (0.41–0.71) 1.04 (0.95–1.13)

Vestland 3.28 (2.08–4.48) 0.33 (0.05–0.55) 0.51 (0.11–0.91)

Rogaland 3.48 (2.28–4.43) 0.2 (0.03–0.4) 0.68 (0.1–1.15)

Trøndelag 3.64 (1.85–5.53) 0.62 (0.31–0.98) 0.67 (0.32–0.91)

Vestfold og Telemark 3.13 (1.53–4.84) 0.25 (0.02–0.57) 0.39 (0.07–0.69)

Innlandet 3.73 (1.95–5.39) 0.54 (0.2–0.84) 0.49 (0.07–0.8)

Agder 2.99 (1.68–4.04) 0.32 (0.06–0.56) 0.51 (0.08–0.96)

Møre og Romsdal 3.41 (1.26–5.59) 1.06 (0.84–1.29) 0.42 (0.04–0.94)

Troms og Finnmark 3.26 (1.85–4.47) 0.25 (0.03–0.65) 0.75 (0.17–1.27)

Nordland 3.89 (1.44–6.24) 0.38 (0.04–0.81) 0.63 (0.17–1.08)

Region Reduction R1 Reduction R2 Population (density [km-2])

Viken 0.93 (0.84–0.98) 0.79 (0.67–0.84) 1 241 165 (55)

Oslo 0.89 (0.84–0.93) 0.8 (0.75–0.84) 693 494 (1 628)

Vestland 0.9 (0.74–0.99) 0.84 (0.56–0.98) 636 531 (20)

Rogaland 0.94 (0.82–0.99) 0.80 (0.5–0.98) 479 892 (26)

Trøndelag 0.83 (0.47–0.94) 0.82 (0.51–0.94) 468 702 (12)

Vestfold og Telemark 0.92 (0.63–0.99) 0.88 (0.55–0.99) 419 396 (419)

Innlandet 0.86 (0.57–0.96) 0.87 (0.59–0.99) 371 385 (8)

Agder 0.89 (0.67–0.99) 0.83 (0.43–0.98) 307 231 (21)

Møre og Romsdal 0.69 ((-0.02)-0.85) 0.88 (0.25–0.99) 265 238 (265)

Troms og Finnmark 0.92 (0.65–0.99) 0.77 (0.31–0.96) 243 311 (243)

Nordland 0.9 (0.44–0.99) 0.84 (0.25–0.97) 241 235 (7)

Top: Estimated regional effective reproduction numbers (mean and 95% CI) in the early period, 2020. Bottom: Estimated relative reduction of transmissibility (mean

and 95% CI) at lockdown start and stop, population size and density [25].

�Oslo, Viken, Nordland, Innlandet, Vestfold og Telemark og Vestland 04/20–07/24.

https://doi.org/10.1371/journal.pcbi.1010860.t001
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Illustrative examples of the fit to the daily hospitalisation and laboratory-confirmed case

incidence for some counties is provided in Figs 3 and 4, respectively. The uncertainty varied

and was naturally larger for counties with fewer cases (e.g., Nordland).

In S1 Text Section S2.9, we compare our estimated reproduction numbers for Oslo and

Viken to estimates from a non-parametric estimation method implemented in the R-package

EpiNow2 [34].

The national picture

To present a national picture, we calibrated the model assuming the same transmissibility in

all regions (Table 2). In Norway, the estimated national reduction in transmissibility after the

lockdown in March 2020 was 85% (78%, 89%), to a reproduction number significantly below

1. After reopening schools, we estimated a reduction of 79% (65%, 91%) compared to before

interventions. During late spring 2020, many restrictions were lifted, but the estimated mean/

median effective reproduction number stayed below 1 until August 1, 2020, when the borders,

universities and schools reopened. During autumn 2020, the estimated national reproduction

number increased. Many restrictions were again implemented on November 5, 2020, and we

estimated a reduction of 75% (69%, 80%) compared to R0. For the restrictions on January 4,

2021, we estimated a reduction of 81% (76%, 85%) compared to R0. On March 2, 2021, Oslo

implemented several restrictions. Nationally, we estimated an effect of these interventions of

66% (57%, 73%) compared to R0.

In S1 Text, Section S2.6, we further discuss and present changes in mobility data associated

with the intervention policies.

As part of the calibration process, we also estimated the proportion of imported cases that

went undetected. Whenever the disease level is low, importation of the virus into the regions is

decisive. In Norway, many of the early imported cases were identified, as testing of everyone

returning from known risk areas was recommended [35]. We estimated that only 49% (33%,

84%) of the imported cases were notified and registered.

Regional predictions

Regional predictions of hospitalisations have been essential for preparedness and capacity

planning in Norway. We produced three-weeks-ahead predictions. Importantly, our predic-

tions assumed no changes in the transmissibility in the short-term, hence showing what would

happen if policies and behaviour remained unchanged. However, as the predictions were used

to inform decision-making by the Norwegian government, publicly available and communi-

cated by the media, they often triggered new policies and behavioural changes, which in turn

influenced reproduction numbers.

As an example, in Fig 3, we show three-weeks-ahead predictions of hospitalisations, using

data until April 1, 2021. As additional interventions were implemented in Norway in late

March 2021, our predictions overestimated the actual data in the county Viken and nationally.

This was due to the natural time gap between transmission and laboratory-confirmed test and/

or hospitalisation: the changes were not yet visible in the data used for calibration. In S1 Text,

Figs G-Z, we present predictions for other dates, where the predictions were better because

intervention policies remained unchanged during the prediction period.

When the main interest is predicting hospitalisations, it is unclear whether it is best to use

both test and hospitalisation data or only the latter when calibrating. On one side, using all

available data should reduce uncertainty, and test data contain more information about recent

changes because of the shorter delay. But if the two data sources are not coherent, parameter

estimates are more uncertain and possibly biased, so in turn, also the hospital predictions may
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Fig 3. Hospital incidence fit. Observed daily (orange dots) and simulated (blue bands) hospitalisation incidence January to April, 2021 for

five counties and nationally March 2020 to April 2021. 3-week-ahead predictions (blue bands) from April 1, 2021 are included together with

actual data (red dots), which are not used in the calibration. The bands correspond to 50, 75, 90 and 95% credibility intervals.

https://doi.org/10.1371/journal.pcbi.1010860.g003
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Fig 4. Test data fit. Observed daily (orange dots) and simulated (blue bands) laboratory-confirmed cases January to April, 2021 for five

counties and nationally March 2020 to April 2021. The bands correspond to 50, 75, 90 and 95% credibility intervals.

https://doi.org/10.1371/journal.pcbi.1010860.g004
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be substantially biased. We compared hospital predictions when calibrating to both test and

hospital data, to when calibrating only to the latter. Results showed that point predictions were

more accurate when only calibrating to the hospital data, see S1 Text, Figs K-P. The predicted

hospitalisations were systematically underestimated when the test data were included. How-

ever, the prediction uncertainty was larger when using only the hospitalisation data.

Improved predictions using regional transmissibilities

We investigated the predictive performance of the proposed model with regionally varying

reproduction numbers for Norway by comparing it to the model using a nationally constant

reproduction number. In addition, we compared it to a simple regional baseline calibration

model that predicts new data will be equal to data from the last two weeks without any trend.

The model is described further in S1 Text, Section S1.4. We predicted the weekly hospitalisa-

tion incidence and the number of new confirmed symptomatic cases region-wise for three

weeks ahead following April 1, 2021, March 1, 2021, November 1, 2020, October 1, 2020, and

September 1, 2020. As the calibration is computationally time consuming, we restricted the

comparison to five periods, selected to cover both relatively stable and changeable parts of the

epidemic. We calibrated using data up to the prediction date. To quantify the quality of predic-

tions and compare models, we calculated a multivariate energy-score for the region-wise pre-

dictions and a continuous ranked probability score (CRPS) for the aggregated national

predictions [36], using the R-package scoringRules [37]. Proper scoring rules allowed us to

study the quality of probabilistic forecasts by simultaneously considering the overlap between

the predictions and observations and the width of the forecast distribution. Lower scores indi-

cated better predictive performance. Scores of predictions from different models can be com-

pared to conclude which model is the preferred model. However, the scoring rules do not

provide an interpretable quantification of how well the predictions performed in absolute

terms. We also present the percentage of weeks per region when the observed hospital inci-

dence was within the 95% prediction interval (PI).

Results, averaged over the five periods, are shown in Fig 5, see also S1 Text, Table D. The

model with regional reproduction numbers clearly outperformed the national model on

Table 2. Estimated national effective reproduction numbers (mean and 95% CI). Dates are provided as mm/dd/

yyyy.

R Period

3.24 (2.47–3.98) 02/17/2020–03/14/2020

0.49 (0.41–0.58) 03/15/2020–04/19/2020

0.66 (0.29–1.1) 04/20/2020–05/10/2020

0.65 (0.12–1.09) 05/11/2020–06/30/2020

0.95 (0.14–1.63) 07/01/2020–07/31/2020

1.09 (0.73–1.36) 08/01/2020–08/31/2020

0.9 (0.73–1.1) 09/01/2020–09/30/2020

1.28 (1.09–1.47) 10/01/2020–10/25/2020

1.23 (1.04–1.5) 10/26/2020–11/04/2020

0.81 (0.75–0.87) 11/05/2020–11/30/2020

1.06 (1.02–1.12) 12/01/2020–01/03/2021

0.6 (0.5–0.71) 01/04/2021–01/21/2021

0.8 (0.65–0.93) 01/22/2021–02/07/2021

1.5 (1.39–1.64) 02/08/2021–03/01/2021

1.08 (1.01–1.14) 03/02/2021–04/01/2021

https://doi.org/10.1371/journal.pcbi.1010860.t002
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predicting hospital incidence and confirmed cases at the county level, shown by the regional

energy scores. The national model performed slightly better on the aggregated national CRPS

score for shorter predictions of 1 week, but the regional model performed better at national

level for predictions two and three weeks ahead. The regional model also exceeded the simple

regional baseline model. The coverage of the regional 50% and 95% PI was good for the hospi-

tal admissions, but low for the test data. This was probably since we used a 7-days moving

average in the calibration of the test data, to avoid estimating additional day-of-the-week

effects. In Norway, short term predictions of hospital admissions have been an important pub-

lic health tool, while predictions of the number of confirmed cases have mainly been used for

model checking and validation.

Discussion

We present a new calibration framework and regional model for situational awareness and

surveillance of a pandemic. During a pandemic like the COVID-19 pandemic, timely informa-

tion about the local effects of most recent interventions is crucial for operational policy deci-

sions. We tested our model in the case of Norway where many essential aspects are present:

incompletely observed importation; time-varying testing capacity and test-targeting strategies;

focus on regional capacity limits of the health system; nation-wide and local interventions;

uncertain changes in population behaviour; spatial heterogeneity of the epidemic with clusters

in the largest cities.

Regarding the early phase of the pandemic in Norway, we estimated a larger lockdown

effect in the most populated regions which also had the most cases, compared to the the

national average reduction. Similar results were found for London (81% [38]) compared to the

Fig 5. Performance scores. Average county energy score, national CRPS and county level coverage of 50 and 95% PI for the regional and national

model.

https://doi.org/10.1371/journal.pcbi.1010860.g005
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whole UK. Note that the estimated reproduction numbers in that period are on the high side

of the estimated reproduction numbers for other countries [39], which could be due to for

example an underestimation of importation, underestimated hospitalisation risks, longer

assumed generation time, or due to mobility, as illustrated in S1 Text, Section S2.8.

Nationally, we estimated a reduction of 85% in transmissibility due to the first lockdown,

similar to the UK (estimated reduction 75% [38]), Germany (79% [40]) and all Europe (81%

(range 75% to 87%) [41]).

Though we found that the early interventions successfully contained the epidemic, we are

not able to discern how the various measures contributed. Interestingly, we found that the

reopening of kindergartens and schools did not increase the reproduction number signifi-

cantly in Norway. Note however that a small increase in the reproduction number may lead to

a large increase in the number of cases in a setting close to the epidemic threshold. Similar

findings have been reported in China, where the increase in intra-city movement after the

lockdown was negatively correlated with transmissibility [42]. We also found that the trans-

mission rate did not grow significantly when mobility was almost back to normal. Hence,

mobility appeared not to drive infectious contacts.

There was a persistent difference in the course of the epidemic in the various counties,

which the regional model accounted for through significantly different estimates of local effec-

tive reproduction numbers. The regional model performed better at predicting hospitalisations

than a model assuming the same transmissibility nationally, and a zeroth-order regional

model forecasting assuming static case counts. Hence, estimating regional reproduction num-

bers is possible and can improve local hospital planning. We selected the changepoints manu-

ally, guided by regionally differentiated interventions and levels of infection. The model

performance depends on their placements. Failure to add a changepoint when there is a signif-

icant change in transmission makes the model perform badly because more parameters are

needed to cope with non-stationarity. To this end, methods for data-driven changepoint detec-

tion [40] can be useful and should be tested in our model in the future. The three-weeks-ahead

predictions could be improved by incorporating estimated effects of planned interventions

during this period. For this purpose, data on the effect of different restrictions (both isolated

and in combination) on regional transmissibility are necessary. Such data are not yet available

and is a theme for further research.

Commenting on the modelling approach, we document how to use both laboratory-con-

firmed cases and the hospitalisation data to inform our regional model and show the impor-

tance of the integration of both data sources. Hospital incidence data are reliable, but suffer

from a time delay. The laboratory-confirmed case data are less delayed and contain informa-

tion on the most recent days; however, repeated changes in testing criteria, capacity, and tech-

nologies, make test data difficult to de-bias, as needed for inference. Inconsistency is known to

be challenging [43] and it results in compromising parameter estimates between the data

sources. While this was useful to make estimation of reproduction numbers more precise, we

showed that when predicting hospital occupancy, calibrating to only hospital data resulted in

less bias, but considerably higher variance.

Inference for many parameters is necessary in a regional model and has been an insurmount-

able challenge for useful-computational-time operations. Our new calibration method consists

of series of calibrations each with fewer parameters, by splitting the calibration data into differ-

ent periods and moving chronologically. Once the past parameters have been estimated, they

are restricted to the samples from the posterior distribution so that one can use all the computa-

tional time in operation to estimate the most recent reproduction numbers. However, despite

the split approach, the approach is still computationally time consuming due to the increasing

difficulty of obtaining acceptable parameter estimates in each round of the calibration.
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A key feature of our model is the lack of age structure in the disease dynamics, which would

require many more parameters. Instead, we have suggested a data-driven approach, using the

age distribution of the positive test cases to describe the age-profile of transmission. In this

way we can account for behavioural changes in the population, avoiding a priori assumptions

about mixing patterns between age groups.

We did not include additional compartments for vaccinated individuals in the metapopula-

tion model. That would have required multiple assumptions about the time-varying effects of

the different vaccines. Instead, we estimate the effective reproduction number after vaccination

directly from the data. Hence, the estimated effective reproduction number automatically cap-

tures the population which is immune due to vaccines. In Norway, vaccination was prioritised

to the elderly and then gradually expanded from older to younger populations as more vac-

cines were available. Since we use the age profile of the test data to calculate hospitalisation

risks, the effect of the vaccination is visible as a decay in hospitalisation risks for the vaccinated

age groups and in this way enter the model. By April 1, 2021, approximately 5.4% and 7.5% of

the Norwegian population had received their second and first vaccination dose, respectively.

The model assumes complete and lasting protection from infection. With the emergence of

new variants, particularly the Omicron variant, reinfections are more frequent. However,

extending the model framework to include partial protection or waning immunity is relatively

straightforward to implement, for example by moving individuals from the recovered com-

partment back to the susceptible compartment or introducing additional vaccination compart-

ments, but it of course requires additional assumptions.

We used a single nationwide detection probability for the laboratory-confirmed cases,

reflecting the national testing criteria in Norway. The estimated probabilities were in the range

55–70%. These proportions are high compared to values of 10–40% reported from Italy and

France. Regularly collected seroprevalence data could provide crucial information about popu-

lation incidence of SARS-CoV-2 infection in Norway; however, unfortunately such data was

not available. A single large-scale Norwegian seroprevalence study suggests that around 9 in 10

cases were detected [44].

Testing practice and thus detection probabilities may differ between regions. It is possible

to estimate separate detection probabilities per region, but with a significant computational

cost. In addition, testing criteria have varied in time, independently of the number of tests per-

formed, affecting the consistency between test and hospital data.

In the case of Norway, we opted for a county-level description in the regional model. The

choice of spatial scale is a trade-off between accuracy/detail and computational time. The

computational time for the infectious disease model scales quadratically in the number of

regions, and hence increasing the number of regions is costly. In addition, if the population

size in a region is too small, there might be too little signal in the data to obtain useful esti-

mates. If the region is too large, it might be unreasonable to assume homogeneity within the

region.

The metapopulation model is appropriate for incorporating mobility estimates on an aggre-

gated level, like in our setting. It allows us to build a spatial prediction model, which can pro-

vide local estimates of infection level. Intra-regional details are not included in the model. This

means that the model is for example not the most appropriate to estimate the effect of different

isolated interventions, like closing of schools. For this, the more detailed, data-hungry, and

computationally demanding agent-based models should be used.

We assume that the mobile phone mobility data are representative of the whole population.

In reality, there are likely sources of bias in the mobility data, for example, age bias (very young

and old individuals less often possess a mobile phone and are thus not well captured). How-

ever, in the case of Norway, Telenor Norway has a substantial market share, well distributed
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over all age groups. While there are published SARS-CoV-2 models informed by historical

mobility data, e.g. [45] using commuting data from 2011, to the best of our knowledge, our

modelling approach is first to employ real-time national mobility data with fine geographical

resolution.

The SEIR model operates with six-hour intervals where the latest recording during the final

two hours is used to track location. Of course, our construction misses movements that hap-

pen during the four non-monitored hours. We have chosen six hours as the temporal resolu-

tion to capture both commuting and long-distance trips. With a shorter time interval, we

would better capture short-duration/short-distance movements at the cost of losing informa-

tion on long-distance/long-duration travel. Vice versa, we would measure long-distance/long-

duration travel better with a longer time window. We believe that the short-duration move-

ments are less critical for the epidemic spread. Moreover, the smaller the time resolution, the

more noise and randomness, as fewer individuals move. In addition, a more refined time scale

is also computationally more expensive. The reason why we only use a single location registra-

tion every six hours is computational: the full history of visited cell towers is extremely vast,

and it is computationally hard to process such complete data. However, this should not be crit-

ical to the workings of the model since during the night, movements are limited, and trips of

short duration are less critical for the spread of the epidemic.

We used mobile phone data lacking information about the home residency of users. Using

simulation, we have explored the effect of applying different rules for selecting individuals

to transfer based on their home municipality. We measured the effects on spatiotemporal

dynamics by determining the timing and size of the peak of the epidemics when using different

rules or with the regularisation method. We show that our choice of prioritising visitors (from

target municipality) before hosts (from donor municipality) and, lastly, residents of separate

localities broadly gives similar spatiotemporal dynamics as the other rules we tested. Moreover,

we document that mobility data generated via our regularisation method produce similar spa-

tiotemporal dynamics as the original origin-destination mobility matrices when applied with

the mobility rules used in this paper, supporting the broader use of mobility data in real-time

settings.

Our predictions and estimates rely on several parameters which are uncertain. There are

uncertainties related to the time from symptom onset to hospitalisation, the age-specific hos-

pitalisation risks, and the natural history parameters of COVID-19. We have based our esti-

mates on local Norwegian data where available, and otherwise relied on international

studies. Seroprevalence surveys can provide an understanding of the population-level inci-

dence of COVID-19. Due to a lack of such data from Norway, the risk of hospitalisation is

uncertain. Repeated nationwide seroprevalence surveys are essential to improve the accuracy

of the model results. Our model is intrinsically dynamic, in the sense that we update the

parameters as new data points arrive daily, and when more information becomes available.

This also implies that the results have changed during the pandemic, sometimes

significantly.

Finally, in this study we have worked with historic data where the case counts are known.

This situation is different from doing real-time surveillance and forecasting, where recent data

are subject to reporting delays. In operation, we therefore additionally estimate reporting

delays. This is done by modelling the progressive correction of data, estimated using a bino-

mial model of the proportion of cases that have been reported the last one, two, three, and four

days, corresponding to the maximally observed reporting delay.

In conclusion, regional differences are a key trait of the COVID-19 pandemic. We propose

a stochastic regional metapopulation model for situational awareness including real-time

mobility data, calibrated to combined daily counts of cases and admissions using a novel Split-
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ABC-SMC technique. We provide estimates of county-specific and national reproduction

numbers for Norway, and three-weekly projections of regional hospital and ICU beds, thereby

documenting our modelling pipeline supporting the Norwegian health authorities and govern-

ment since the early phase of the COVID-19 pandemic. Our approach is rather complex,

focussing on geographical aspects at the expense of adopting a simple transmission model

within each unit. We show that the model provides better projections compared to selected

reference models. However, other studies, including adaptations to other countries, and addi-

tional data, are warranted to validate the approach further.

Supporting information

S1 Text. Supporting information appendix for: A real-time regional model for COVID-19:

Probabilistic situational awareness and forecasting. Additional supplementary results and

methods.
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