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Background: Campylobacter  is a leading cause 
of food and waterborne illness. Monitoring and 
modelling  Campylobacter  at chicken broiler farms, 
combined with weather pattern surveillance, can 
aid nowcasting of human gastrointestinal (GI) 
illness outbreaks. Near real-time sharing of data 
and model results with health authorities can help 
increase potential outbreak responsiveness. Aims: 
To leverage data on weather and  Campylobacter  on 
broiler farms to build a risk model for possible 
human Campylobacter outbreaks and to communicate 
risk assessments with health authorities. Methods: 
We developed a spatio-temporal random effects 
model for weekly GI illness consultations in Norwegian 
municipalities with  Campylobacter  monitoring and 
weather data from week 30 2010 to 11 2022 to 
give 1-week nowcasts of GI illness outbreaks. The 
approach combined a municipality random effects 
baseline model for seasonally-adjusted GI illness 
with a second model for peak deviations from that 
baseline. Model results are communicated to national 
and local stakeholders through an interactive website: 
Sykdomspulsen One Health. Results: Lagged tem-
perature and precipitation covariates, as well as 
2-week-lagged positive  Campylobacter  sampling 
in broilers, were associated with higher levels of 
GI consultations. Significant inter-municipality 
variability in outbreak nowcasts were observed. 
Conclusions: Campylobacter  surveillance in broilers 
can be useful in GI illness outbreak nowcasting. 
Surveillance of  Campylobacter  along potential 
pathways from the environment to illness such as via 
water system monitoring may improve nowcasting. 
A One Health system that communicates near real-
time surveillance data and nowcast changes in risk 
to health professionals facilitates the prevention 
of  Campylobacter  outbreaks and reduces impact on 
human health.

Introduction
In syndromic and data-driven infectious disease sur-
veillance, health indicators are used to facilitate early 
detection of outbreaks [1]. Syndromic surveillance is 
based on non-laboratory confirmed information, and 
so using several data sources and models for outbreak 
detection is often desired since both the sensitivity and 
specificity of one data source can be suboptimal [2,3]. 
A One Health perspective is increasingly acknowledged 
as important for surveillance and preparedness, given 
that approximately 75% of emerging pathogens affect-
ing humans are regarded as zoonotic [4]. Thus, combin-
ing available data from animal and human health with 
environmental sectors in a risk model is an important 
aspect of improved surveillance.

One well-established source of food- and water-
borne gastrointestinal (GI) illness in humans 
is  Campylobacter  spp [5,6]. In Norway, there have 
been over 35,000 samples from humans positive 
for Campylobacter since 2004 [7], including at least six 
GI illness outbreaks with between 3 and 2000 cases, 
where  Campylobacter  was confirmed as the source 
of infection [8]. In the EU, there are over 246,000 
human  Campylobacter  cases reported annually 
[9]. Most human cases of Campylobacteriosis are spo-
radic with an unknown source and can occur through 
consumption of contaminated food or water, contact 
with animals, or from a contaminated environment. 
With respect to food contamination, farmed chicken 
broilers are prone to  Campylobacter  infection [10-12]. 
There are still knowledge gaps in the transmission 
routes of Campylobacter  to broilers [13], but it is sug-
gested that the outdoor environment is a major source 
of Campylobacter in broiler flocks.

Unmonitored  Campylobacter  in the environment, 
especially water systems, is a concern for 
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human infection. The influence of temperature 
on  Campylobacter  abundance in both broilers and 
humans is known [14,15], and subsequent leakage of 
the pathogen into water systems because of precipi-
tation events is a hypothesis for GI illness outbreaks 
as well as transport of the bacterium into broiler 
houses [16,17]. Using the number and proportion 
of Campylobacter-positive broiler flocks as a proxy of 
increased Campylobacter in the environment, combined 
with weather data, could provide an opportunity to 
foresee and prevent future outbreaks.

Real time visualisation of surveillance data and stake-
holders’ ability to access these data are crucial for 
the utility of early disease detection and limiting the 
impact of an outbreak. Interactive websites for this 
purpose are increasingly used in several countries. 
Examples are the FoodNet Fast, Foodborne Diseases 
Active Surveillance Network, at the Centers for Disease 
Control and Prevention (CDC) (https://www.cdc.gov/
foodnet/foodnet-fast.html) and the European sur-
veillance portal EpiPulse [18,19]. In Norway, a closed 
interactive website (Sykdomspulsen for kommune-
helsetjenesten) for municipality doctors and county 
leaders featuring surveillance of coronavirus disease 
(COVID-19) and respiratory and GI illness has been 
ongoing since 2020 [20,21]. By providing timely out-
break nowcasts at the municipal level to central health 
authorities in Norway through an interactive web-
site, one can improve municipalities’ public health 
responses.

The aims of this study were to improve the surveil-
lance of GI illnesses by building statistical now-
casting models using weather data and broiler 
farm Campylobacter surveillance data, and disseminate 
these nowcasts via a website where warnings are 
generated when appropriate so that action can be 
taken when needed.

Methods

Study design
The study was designed as a spatial-temporal time 
series analysis with week and municipality as the 
units. The outcome was weekly counts of GI consul-
tations within all Norwegian municipalities (n = 356) 
from week 30 2010 (starting 26 July) to week 11 2022 
(starting 14 March) and modelled using lagged values 
of Campylobacter  detection percentages and different 
weather pattern features within each municipality. 
Data sources and their extent are shown in Table 1 with 
each described in detail below.

Data sources

Consultation data for human gastrointestinal illness
Consultation data consisted of all physician consulta-
tions at clinics and urgent care facilities among all indi-
viduals aged 30 to 64 years in Norway from week 30 
2010 to week 11 2022 (Table 1). This age group was cho-
sen because of (i) the existing granularity of age strata 
in the data and (ii) a concern that younger and older 
age strata would be more enriched for non-Campylo-
bacter  infections such as norovirus, adenovirus and 
sapovirus. During a consultation, one or more diagnosis 
code(s) based on the International Classification of 
Primary Care (ICPC-2) [22] system are assigned to every 
patient contact and are electronically submitted to the 
Norwegian Directorate of Health to receive reimburse-
ment for consultations [23]. The data are electronically 
sent to the Norwegian Institute of Public Health (NIPH) 
on a continuous basis. NIPH is responsible for the sur-
veillance of food and waterborne illness in humans in 
Norway. When data are received, they are automati-
cally cleaned and aggregated into different categories 
for various usages. The category ‘GI illness consulta-
tions’ used in this article combined all consultations 
with the codes D11/diarrhoea, D70/gastrointestinal 
infection and D73/gastroenteritis-presumed infection.

Campylobacter data from poultry farms
The data included test results from the Norwegian sur-
veillance programme for Campylobacter spp. in broiler 

Table 1
Data sources used in the study of real-time surveillance system for nowcasting increased gastrointestinal illness 
consultations, Norway, week 30 2010–week 11 2022 (n = 356 municipalities)

Data source One Health 
component Data owner Frequency Geographical area

Gastrointestinal illness 
consultation data

Human 
 

(aged 30–64 
years)

Norwegian Health 
Directorate Daily All municipalities in Norway

Campylobacter testing in 
broiler flocks Animal Norwegian Food Safety 

Authority Weekly All municipalities in Norway where at least 
one broiler farm is located (n = 107)

Precipitation Environment Meteorological Institute Daily All municipalities in Norway
Temperature Environment Meteorological Institute Daily All municipalities in Norway
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flocks (Table 1), implemented under the responsibil-
ity of the Norwegian Food Safety Authority. There are 
around 500 broiler farms in Norway that are unevenly 
geographically distributed. Each farm may have one or 
more flocks at a time and each flock is usually slaugh-
tered between 31 to 48 days old [24]. All broiler flocks 
younger than 50 days of age slaughtered annually 
between 1 May and 31 October were sampled. Sampling 
did not occur from November to April because of a neg-
ligible proportion of Campylobacter detected in winter 
months. For each flock, one sample consisting of 10 
pooled swabs from fresh faecal/caecal droppings were 
collected by the farmer; the farmer was responsible 
for submitting the sample and its metadata. The 
Norwegian Veterinary Institute (NVI) performed the 
analysis for Campylobacter spp in the samples by real-
time PCR [25]. Surveillance in 2020 showed that a total 
of 115 flocks (6.1%) tested positive for Campylobacter 
spp [24].

The data were cleaned for registrations where the 
municipality of the broiler flock was unknown (n = 11) 

and samples originating from flocks where the species 
and/or production type were not specified (n = 127). 
Altogether 26,435 samples from week 30 2010 to 
week 11 2022 were included in the data. For each ISO 
year, ISO week and municipality, the total number of 
chicken farms and the number of samples categorised 
into the Campylobacter  test results; data for positive, 
negative, rejected, and received (i.e. not analysed yet) 
samples were aggregated and reported.

Weather data
Weather data were continuously collected from approx-
imately 320 different measurement stations throughout 
Norway by the Norwegian Meteorological Institute [26], 
where they were analysed with an interpolative method 
to give daily precipitation, which includes rainfall and 
snowfall (mm), and daily minimum, maximum and aver-
age temperature (°C) for 1 km2 grid data [27]. The data 
were retrieved automatically on a daily basis by NIPH 
where they are converted to municipality averages.

Figure 1
Average percentage of A. gastrointestinal illness consultations of all consultations within each municipality and B. positive 
Campylobacter tests on farms aggregated by municipality, Norway, week 30 2010–week 46 2021 (n = 356 municipalities)
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B. Positive Campylobacter tests on broiler farmsA. Gastrointestinal illness consultations

https://crossmark.crossref.org/dialog/?doi=10.2807/1560-7917.ES.2022.27.43.2101121&domain=pdf&date_stamp=2022-10-27


4 www.eurosurveillance.org

Spatio-temporal modelling
We fit spatio-temporal models to weekly counts of GI 
consultations within all 356 Norwegian municipalities 
from week 30 2010 to week 11 2022, the most cur-
rent week available at the time of writing, for a total of 
215,024 municipality-week observations [28-31]. Model 
fits were determined by the ‘surveillance’ package in 
the statistical programming language R [32,33]. We 
used the total number of consultations for each munic-
ipality week as an offset term to account for popula-
tion size heterogeneity and variation in demand on the 
health system introduced by holidays and other sea-
son-associated factors operating on a short time scale. 
Random intercepts were used to account for municipal-
ities’ tendencies towards higher or lower proportions of 
GI consultations (Figure 1A). 

We modelled these data as a negative binomial distrib-
uted outcome with a linear time trend, cyclic seasonal 
terms on 6 degrees of freedom (df), and separate inter-
cept and time trends to account for the post-COVID-19 
pandemic onset time window. We explored the use 
of the proportion of the week that was holiday and 
autoregressive terms, but found these were either not 
statistically significant after introduction of the offset 
term or untenable from the perspective of nowcasting 
because of lag time in health system data availability. 

The model ultimately was a special case of that 
described in [28,31,34] with:

for negative binomial distributed mean µit of observed 
outcome yit  (GI illness consultations) for municipal-
ity  i  at week  t, and offset νit  for total consultations, 
where endemic component ηit is modelled with

for municipality-specific random intercepts αi, time 
trend β, ‘COVID-19 era’ time trend βC  and intercept 
αC, and seasonality parameters δS  and γS,  with ωS  = 
(2πs)/52 for index set S, in our case [1…3]. The COVID-
19 era time trend and intercept applied to the period 
after 15 March 2020 and was intended to account for 
the COVID-19 pandemic’s significant influence on the 
use of health system resources. Likewise, modelling 
the logged mean of GI consultations with log µit  = log 
ηit + log νit has the benefit of allowing one to interpret 
parameters in terms of their expected influence on the 
proportion of GI illness consultations, where variables 
are associated with changes on the multiplicative 
scale of this proportion. This quantity is more stable 
over season, holiday period, and the time window 
under consideration, and one also benefits from more 
statistically efficient estimation of model parameters 
when using this parametrisation due to offset νit.

The model has an extra df to account for overdisper-
sion in the outcome. The model parametrisation has

for parameter Ψ estimated from the data. We also 
weighted the municipality-weeks in the model accord-
ing to the total number of consultations for that week in 
thousands, where a minimum value was set at 1. In this 
way, model fits reflected municipality size while incor-
porating the statistical associations present in smaller 
municipalities. We performed chi-squared tests on the 
season components jointly on 6 df and also 1 df tests on 
time trends, the COVID-19 era intercept term, and over-
dispersion parameter, and evaluated model calibration 
via use of the probability integral transformation (PIT) 
on ‘one-step ahead’ out-of-sample observations over 
the most recent 6 months of data available [35]. This 
assessment is performed under a scheme whereby 
future observations are transformed using a PIT calcu-
lated only on historical data, which should be distrib-
uted uniform under a well-calibrated model and moves 
progressively forward in time as one makes the assess-
ment over a specific time interval. Adjusted McFadden 
pseudo R2 for the baseline model was estimated.

After fitting this baseline model using maximum like-
lihood in the R statistical environment, we built a 

Table 2
Model parameter estimates for season, time and intercept 
terms composing the model for gastrointestinal illness 
consultations over all municipalities, Norway, week 30 
2010–week 11 2022 (n = 356 municipalities)

Covariate Parameter 
estimate 95% CI p value

Intercept −5.11 −5.120 to −5.100 < 0.0001
Time trend −0.017 −0.019 to −0.015 < 0.0001
Seasonal 
components NA NA < 0.0001

Sine (2*pi*time/52) 0.047 0.043 to 0.052

NA

Cosine 
(2*pi*time/52) 0.017 0.013 to 0.022

Sine (4*pi*time/52) 0.036 0.031 to 0.040
Cosine 
(4*pi*time/52) 0.120 0.110 to 0.120

Sine (6*pi*time/52) 0.004 −0.001 to 0.007
Cosine 
(6*pi*time/52) 0.061 0.057 to 0.066

COVID-19 era 
intercept −0.63 −0.650 to −0.610 < 0.0001

COVID-19 era time 
trend 0.063 0.030 to 0.096 < 0.0001

Random effect 
variance 0.058 NA NA

Overdispersion 
parameter 0.070 0.068 to 0.073 < 0.0001

CI: confidence interval; COVID-19: coronavirus disease; NA: not 
applicable; pi: 3.14.

The COVID-19 era intercept term and time trend were parametrised 
to begin 15 March 2020.
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logistic regression model for the deviation of the mod-
el’s standardised residuals falling above a specified 
threshold, a binary indicator of a possible GI illness 
outbreak of at least modest severity. It also accommo-
dated the hypothesis that the ‘GI illness consultations’ 
outcome is a mixture distribution of normal GI illness 
dynamics and a small number of ‘outbreak’ events 
when possible  Campylobacter  contamination occurs, 
which manifests in the tail of the residual distribution. 
We defined peaks by those occurring above the 
99th  percentile of that expected for the municipality-
week according to the baseline model to address the 
trade-off between modelling true signal of a GI illness 
outbreak and balance and statistical power of the 
outcome.

For 102 municipalities with at least 
10  Campylobacter  surveillance observations and 
a non-zero number of encounters recorded in the 
health system over 11 years of data, we modelled 
this binary outcome using a logistic regression model 
with weights as used in the negative binomial model 
and explored distributed lag models of 1- to 5-week 
lags, depending on the variable, of positive tests 
for  Campylobacter  (Figure 1B) and municipality farm 
data in addition to local weather features. Nowcasting 
further in the future was not extensively explored 
partly because larger lags were not significant in mod-
els. Additionally, the hypothesised route to contamina-
tion of the general population would be expected to 
only be detectable statistically on a shorter timeline as 
longer ones would exhibit greater variability in time to 
outbreak which could not be isolated to a specific week 
lag in a model. We fit the model with robust standard 
errors to account for any residual correlation from the 
baseline model between proximal municipalities. The 
total number of  Campylobacter  municipality-weeks 
modelled was 10,667 over the 11 years of follow-up 
time.

Campylobacter  covariates explored included the 
proportion and total number of farms within a 

municipality testing positive for  Campylobacter,  and 
the total number of farms and number 
of  Campylobacter  samples taken in a municipality. 
The weather features we explored in models were 
average temperature, average precipitation, within-
week temperature variation and range, and an 
indicator for below freezing temperatures, a subset of 
which have been shown to influence Campylobacter  in 
broiler flocks [5,11,16,17,36]. For municipalities with-
out  Campylobacter  surveillance data because of a 
lack of broiler farms, we modelled the outcome with 
the same weather features. Doing so assumes that 
all Campylobacter measurements are some population 
average, invariant across municipality and therefore 
absorbed into the intercept term of the model. Model 
selection was performed with Akaike’s information 
criterion (AIC), which asymptotically minimises out of 
sample mean square error, and chi-squared tests were 
performed on all included features [37].

Sykdomspulsen One Health website
Sykdomspulsen is an umbrella term for a surveillance 
system and an interactive website which dissemi-
nates the data and model-based results of that sys-
tem (https://docs.sykdomspulsen.no), both of which 
were developed at NIPH and are built on R [33]. The 
Sykdomspulsen surveillance system performs real-
time analysis and disease surveillance of several dif-
ferent infectious diseases and causes of death.

While Sykdomspulsen has broader application, for 
this particular One Health project the system auto-
matically includes new data (GI consultation data for 
human illness, Campylobacter  data from broiler farms 
and weather data), runs models, and adds results to 
the One Health Sykdomspulsen website once a day. 
The One Health Sykdomspulsen website is a closed 
website for stakeholders in Norway. It is developed 
using the R shiny package, which allows the creation of 
interactive modules for data visualisation [33,38]. Data 
and model results are shown in two different ways: 
maps and graphs. The maps are interactive, allowing 

Table 3
Results from risk model for gastrointestinal illness consultations’ deviation from baseline model over municipalities 
with Campylobacter data, Norway, week 30 2010–week 11 2022 (n = 102 municipalities)

Covariate (lag) Lag OR 95% CI Risk ratio over covariate quantiles p value
Intercept NA 0.015 0.012 to 0.020 NA < 0.001
Temperature SD 1 week 1.136 1.03 to 1.26 1.91 0.014
Freezing temperature 1 week 1.748 1.09 to 2.80 1.54 0.021
Number of Campylobacter samples taken 1 week 0.938 0.882 to 0.99 0.62 0.040
Precipitation (mm) 2 weeks 1.027 1.005 to 1.05 1.49 0.013
Freezing temperature 3 weeks 0.359 0.085 to 1.51 0.66 0.163
Campylobacter proportion 2 weeks 1.004 1.0002 to 1.009 1.73 0.036
Number of municipality flocks 2 weeks 1.013 1.001 to 1.026 1.70 0.030

CI: confidence interval; NA: not applicable: OR: odds ratio; SD: standard deviation.
Weather and Campylobacter covariates were chosen to minimise Akaike’s information criterion (AIC). Weather data come from the Norwegian 

Meteorological Institute and Campylobacter spp sampling from the Norwegian surveillance programme of broiler flocks [24].

https://crossmark.crossref.org/dialog/?doi=10.2807/1560-7917.ES.2022.27.43.2101121&domain=pdf&date_stamp=2022-10-27


6 www.eurosurveillance.org

the user to zoom in and out of a desired area and hover 
the mouse over a municipality to reveal specific infor-
mation about it. The graphs are also interactive, allow-
ing the user to select the geographic area of interest 
and the time period to display. In addition, we changed 
the default layout and visual design through a custom 
cascading style sheet (CSS) to make the website more 
user-friendly and coherent with the visual style of NIPH.

Results

Parameter estimates and hypothesis testing
We modelled counts of GI consultations within all 
356 Norwegian municipalities from week 30 2010 to 
week 11 2022, for a total of 215,024 municipality-week 
observations. The baseline model for the number of 
GI consultations (Table 2) reveals all model param-
eters, shown on log scale, to be highly significant. The 
adjusted McFadden pseudo R2 for the model was 0.28 
[39]. The time trend prior to the start of the COVID-19 
pandemic in Norway is estimated as slightly negative, 
indicating a gradual movement towards a slightly lower 
proportion of GI illnesses over time, while the COVID-19 
era intercept term is also negative with a large effect 
size indicating an approximate 46% drop in the GI 
consultation proportion in the immediate period after 
the COVID-19 pandemic began. Visual inspection of 
the composition of season terms indicates expected 
tendencies of a lower proportion of GI consultations 
in spring and fall. A joint test of these terms was per-
formed using a chi-squared null distribution on 6 df 
and was found highly significant (p < 1e−14). The vari-
ance of random effects is large, indicating a nearly 
threefold difference in the expected GI proportion 

between the 2.5% and 97.5% municipality quantiles, 
which is consistent with empirical variation in GI con-
sultation proportion by municipality. The model ‘one-
step ahead’ assessment of model calibration revealed 
a well-fitting model, with the cumulative distribution 
function’s transformation of out-of-sample observa-
tions of the 6 most recent months of data yielding an 
approximate uniform distribution as desired, with an 
only modest increase in mass above expected near 1 
(Supplement S1: Probability Integral Transform figure 
for assessment of model calibration). We found that 
the PIT looked nearly identically uniform with munic-
ipality-specific variance parameters, but prioritised 
model parsimony to this overly flexible model.

Risk model for deviation from season-adjusted expected 
gastrointestinal illness consultations
The second-stage logistic regression model for the 
dichotomised positive deviations from the base-
line model among municipalities with broiler flocks 
examined for  Campylobacter  revealed additional, 
statistically significant associations (Table 3), where 
odds ratios, confidence intervals, risk ratios and p val-
ues are presented. Lagged covariates from 1 to 3 weeks 
were all present after model selection, with the 2-week-
lagged proportion of positive  Campylobacter  tests 
and number of broiler farms in a municipality both 
associated with an expected increase in the probability 
of an outbreak. The number of Campylobacter samples 
taken is also significant and has an odds ratio (OR) 
of less than 1. Because of the presence of the posi-
tive  Campylobacter  proportion in the same model, 
increasing the number of  Campylobacter  samples, 
holding all other variables constant, indicates a 
lower positive  Campylobacter  proportion; thus, a 
smaller risk of the outcome is expected. Because the 
outbreak probability is low, exponentiated coefficients 
can be interpreted on the risk ratio scale, with that 
of  Campylobacter  presence vs absence to be 1.73. 
Precipitation, temperature and their transformations 
were likewise associated with changes in the 
outbreak probability. Risk ratios are presented for 
these continuous covariates over their 2.5th  and 
97.5th  quantiles, which give the change in risk over 
the range of realised covariate values being analysed. 
For example, the interpretation of precipitation (mm) 
at its 2-week lag is, for each additional 1 mm, one 
expects 3% higher risk of an outbreak as defined by 
extreme deviation from the baseline model (p = 0.013). 
Additionally, at the 97.5% quantile of that covariate, 
the risk of an outbreak is 1.49 times higher than at 
the 2.5% quantile. Straightforward interpretation of 
other weather covariates is difficult because of the 
association between, for example, the presence of 
freezing temperatures and the variation of temperature 
within a week. The model explained a statistically 
significant amount of variation in the outbreak outcome, 
with fitted probabilities of an outbreak varying from 
1.4% to 4.03% in the 2.5th to 97.5th quantiles.

Figure 2
Interactive map, as presented on the Sykdomspulsen One 
Health website for selected municipalities, Norway, week 
45 2021 (n = 38 municipalities)

The map shows the probability of an outbreak event (Norwegian: 
Sannsynlighet for Campylobacter-hendelse) happening in the 
current week. When hovering over a municipality, the name of 
the municipality and the probability of an event are displayed. 
For sensitivity reasons, only the municipalities with three or 
more farms are displayed, which yields a total number of 38.
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Sykdomspulsen One Health website
The One Health Sykdomspulsen website is used to vis-
ually present data and model output. It displays sev-
eral figures including (i) a map of the number of farms 
per municipality, (ii) a map of the model-based risk of 
an outbreak happening in the current week per munici-
pality (Figure 2), (iii) a climatograph with temperature 
and precipitation (Figure 3), (iv) a graph of the total 
number of Campylobacter samples and the proportion 
of positive samples for Campylobacter  in poultry and 
(v) a graph showing both the historic proportion of 
physicians’ consultations related to GI illness and the 
nowcasted proportion for the current week.

All maps and graphs are interactive, as the user can 
choose the geographical area and time period to dis-
play. In addition to showing raw data and model results, 
the website also offers information on One Health in 
general, the relevant European Union (EU) projects, the 
partner institutions, and background information on GI 
illness and  Campylobacter  infections in Norway. This 
creates a hub of information common to the sectors 
of public health, animal health and food safety, where 
data are updated automatically, and which is easy to 
maintain and extend to future research programs.

This website is currently a pilot project, open to a few 
stakeholders (NIPH, NVI, and the Norwegian Food 
Safety Authorities). We are in the process of collecting 
feedback from these users to improve the content and 
usability of the website in the future.

Discussion
In this One Health collaboration, data from the animal, 
human, and environmental sectors were combined in a 
model for nowcasting human GI illness outbreaks. Our 
results illustrate how data from these sectors could be 
used in syndromic surveillance with automated collec-
tion and combination of separate databases. Given the 
need for improving nowcasting of disease outbreaks, 
this study serves as an example for setting up a One 
Health system and website that can be built upon for 
further One Health collaboration.

Our outbreak nowcasting models yielded statisti-
cally significant relationships that are consistent with 
the hypothesis that weather patterns and presence 
of  Campylobacter  sampled on municipality broiler 
farms (used as a proxy for increased environmental 
contamination) are associated with modest increases 
in the GI illness consultation burden in Norwegian 
municipalities. In several European countries, an EFSA 

Figure 3
Interactive climatograph, as displayed on the Sykdomspulsen One Health website, with weekly data aggregated over all 
municipalities, Norway, week 45 2016 to week 45 2021 (n = 356 municipalities)

The graph shows average temperature (Norwegian: gjennomsnittstemperatur) and precipitation (Norwegian: nedbør) data. The user can 
choose the area (Norwegian: geografisk område) and the time period (Norwegian: tidsperiod), which will update the graph automatically.

https://crossmark.crossref.org/dialog/?doi=10.2807/1560-7917.ES.2022.27.43.2101121&domain=pdf&date_stamp=2022-10-27


8 www.eurosurveillance.org

report claimed that broilers might account for 50–80% 
of human cases of campylobacteriosis. However, the 
consumption of contaminated broiler meat might only 
account for 20–30% of those cases [40]. This is also 
supported when analysing both broiler and human 
Norwegian Campylobacter data where there was simul-
taneous space-time clustering in both broilers and 
humans, despite broiler-meat having a nation-wide dis-
tribution [6]. Though consumption of chicken meat is a 
risk factor for campylobacteriosis in Norway [41], this 
could indicate that broiler meat is not the only source 
of human infection in the country, and that there are 
common sources of contamination for Campylobacter-
positive broiler flocks and human campylobacte-
riosis cases [6]. This is in line with the notion that 
while poultry products are one possible source 
of  Campylobacter  infections, environmental sources 
like drinking untreated water from streams and lakes 
are also significant risk factors for acquiring Campylob
acter infection [41-45].

Some  Campylobacter  samples from broiler farms 
were excluded because of unknown municipality 
or missing species or production type. This is not 
expected to influence model results since the number 
of excluded samples was 138 among 26,573. Not all 
municipalities have broiler farms and hence many 
geographical regions of Norway were excluded from 
the model, which can influence generalisability to 
those regions. For those Norwegian municipalities 
without  Campylobacter  sampling, a model based on 
only weather data was developed.

The consultation data are not specifically targeted at 
detecting  Campylobacter  infection, only GI illness in 
general. There are several increases in GI consultations 
in the data that are not because of Campylobacter, but 
rather other infections. This reduces the statistical 
power of detecting genuine associations. To address 
this difficulty, we only used patients aged 30 to 64 years 
since there is an increased probability of having other 
GI illness like norovirus, adenovirus and sapovirus in 
other age groups. These viruses are very contagious 
when people are in close proximity, and outbreaks in 
nurseries, schools and care facilities for elderly people 
are very common. The variation in timescale on which 
environmental contamination would be expected to 
infiltrate the general population is another modelling 
challenge that might underpower the study because 
only specific lag times were searched over during model 
selection. The overall risk of a Campylobacter outbreak 
is low, indicative of both generally modest deviations 
from seasonal expectations of the GI consultation 
proportion and low prevalence of such outbreaks in the 
country of Norway. However, the model still provides 
a useful tool and proof of concept for the promise of 
combining and modelling these disparate data sources 
and communicating with policymakers in turn. It also 
points to improvement of nowcasting  Campylobacter 
outbreaks in humans with the addition of other data 

sources or specification of more defined population 
groups.

Our model fits are consistent with current understand-
ing of Campylobacter, weather, and GI illness, but also 
give insight into their interplay since these factors have 
mainly been studied pairwise in the past. The model 
shows that greater numbers of broiler flocks testing 
positive for Campylobacter at a 2-week lag is associated 
with modest increases in risk for an outbreak in humans. 
It is notable that Campylobacter presence at other time 
lags was not statistically significant in the model. 
However, the study was not designed to identify any 
causal relationship between  Campylobacter  infection 
in poultry and humans and one should be careful 
interpreting the statistical associations identified 
as such. While it is known that weather influences 
likelihood of testing positive for  Campylobacter, the 
influence of weather on GI illness after controlling for a 
given amount of Campylobacter has not been studied, 
which is the interpretation of weather covariates 
in this multivariate regression model. Precipitation 
and temperature at different time lags are likewise 
statistically significant in the model, with effect sizes 
indicating their increased and reduced association 
with an outbreak depending on the lag and variable. 
Interpretation of these covariates is difficult since 
each is conditional on the other, and there is temporal 
correlation between lagged values. It is clear, however, 
that weather events have significant bearing on the 
outcome.

The model points to several ways in which the surveil-
lance system could be improved to better understand 
the interaction of Campylobacter, environment, weather 
and human health, and to communicate those insights 
to health professionals. There is clear nowcasting ben-
efit to the availability of more  Campylobacter  testing 
results. This study uses already available information 
from Campylobacter  surveillance in broiler flocks, the 
sampling of which is meant to identify and restrict the 
entry of  Campylobacter  into the food chain. Because 
broiler farms are therefore used as a proxy for enviro
nmental  Campylobacter  contamination, it could also 
be beneficial to survey environmental contamination 
directly, including data from the control of water 
systems and incorporate it into an expanded model.
The One Health Sykdomspulsen website is based on 
a collaboration between public health, animal health, 
and the food safety authority and is therefore an impor-
tant step into a common One Health surveillance pro-
gramme of infectious disease. The website is in a pilot 
stage, and its use by health authorities (NIPH, NVI, 
and the Norwegian food safety authority) will continue 
to evaluate and develop. We therefore anticipate that 
such a website, accessible to various sectors involved 
in infection prevention, with automated, near real-time 
surveillance of  Campylobacter  and synchronous with 
other infectious diseases, will prove to be useful in 
the daily surveillance, understanding, and prevention 
of zoonotic illnesses. At a later stage, for example, 
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municipal doctors may also be introduced to the 
website and be notified when there is an increased 
risk of Campylobacter outbreak. Through this channel, 
health authorities could subsequently advise the local 
water management to test water quality, increase 
disinfection of the water and/or notify the public to boil 
their water.

Conclusion
This study demonstrates the potential benefits of inte-
grating data from animal and human sectors via sta-
tistical models when setting up a One Health system 
and website to improve disease surveillance. We also 
show how automated, regular, and coordinated data 
transfer between animal and public health institu-
tions can facilitate the kind of model building required 
for achieving this goal. The communication of model 
insights to health professionals via a website is the 
last link in a surveillance system with practical use to 
society at large. This project is therefore a step towards 
improving the One Health collaboration in Norway and 
solidifying ways of working across institutions. As part 
of a wider EU project, it is also an important develop-
ment for One Health surveillance in Europe.
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