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Abstract

It is acknowledged that some obesity trajectories are set early in life, and that rapid weight gain in infancy is a risk factor for
later development of obesity. Identifying modifiable factors associated with early rapid weight gain is a prerequisite for
curtailing the growing worldwide obesity epidemic. Recently, much attention has been given to findings indicating that gut
microbiota may play a role in obesity development. We aim at identifying how the development of early gut microbiota is
associated with expected infant growth. We developed a novel procedure that allows for the identification of longitudinal
gut microbiota patterns (corresponding to the gut ecosystem developing), which are associated with an outcome of
interest, while appropriately controlling for the false discovery rate. Our method identified developmental pathways of
Staphylococcus species and Escherichia coli that were associated with expected growth, and traditional methods indicated
that the detection of Bacteroides species at day 30 was associated with growth. Our method should have wide future
applicability for studying gut microbiota, and is particularly important for translational considerations, as it is critical to
understand the timing of microbiome transitions prior to attempting to manipulate gut microbiota in early life.

Citation: White RA, Bjørnholt JV, Baird DD, Midtvedt T, Harris JR, et al. (2013) Novel Developmental Analyses Identify Longitudinal Patterns of Early Gut
Microbiota that Affect Infant Growth. PLoS Comput Biol 9(5): e1003042. doi:10.1371/journal.pcbi.1003042

Editor: Andrey Rzhetsky, University of Chicago, United States of America

Received August 23, 2012; Accepted March 8, 2013; Published May 9, 2013

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: This work was supported by the Norwegian Research Council [214324]; and the Intramural Research Program of the National Institutes of Health,
National Institute of Environmental Health Sciences [Z01 ES045005-14]. The funders had no role in study design, data collection and analysis.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: peddada@niehs.nih.gov

" SDP and ME are joint senior authors on this work.

Introduction

Gut microbiota has a critical role in human health [1–6]; early

infancy is of special interest because the early life period is a

determinant for the subsequent adult-like microbiota. Once the

first microbes arrive in the sterile gut of the newborn, a dynamic

process starts, where activation of genes and expression of

receptors in the host plays an important role for the building of

niches and the further selection of microbes. More importantly,

studies on germ free animals have revealed the presence of time-

dependent exposure windows that rely on microbial stimuli from

the gut [7] (i.e. development of tolerance [8,9], sensitivity to

biogenic amines [10], influences on cecum size [10], and optimal

functioning of diverse systems, such as angiogenesis [11] and stress

responses [12]).

Obesity has been linked to gut microbiota in humans, by being

associated with reduced bacterial diversity and altered represen-

tation of bacterial genes and metabolic pathways [4]. Since rapid

weight gain in early life is a risk factor for the later development of

obesity [13], we aimed to study whether early infant gut

microbiota was associated with the World Health Organization’s

definition of expected growth in the first six months of life. As gut

microbiota can be altered, or even transplanted [4], there is large

potential for future medical interventions.

We describe a novel method that identifies patterns of gut

microbiota exposures associated with potential time-dependent

exposure windows in longitudinal data. We implement this

method in the Norwegian Microflora Study (NOMIC) to reveal

which patterns of gut microbiota (representing the gut ecosystem

developing) are associated with expected infant growth, and

compare the results to a standard linear regression model.

We aim at identifying how the development of early gut

microbiota affects infant growth. Proper knowledge of the time

dependencies of gut microbiota as an exposure is a crucial

underpinning before experimental attempts to manipulate early

gut microbiota can be made. In light of this, our method will have
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considerable future applications, especially in the translational

area of gut microbiota research.

Materials and Methods

Ethics statement
The study was approved by the Regional Ethics Committee for

Medical Research in Norway (approval ref 2002, S-02216) and the

Norwegian Data Inspectorate (ref 2002/1934-2). The approvals,

as well as informed consent from the mothers, were obtained prior

to collection of data and samples.

Study population
NOMIC is a birth cohort designed to study the establishment of

gut microbiota during infancy and its consequences for child

health. Participating mothers were recruited to the NOMIC study

by a paediatrician at the maternity ward in a county hospital in

South Norway. The recruitment protocol purposefully over-

sampled preterm children; whenever a preterm-birth mother was

enrolled, two mothers of consecutively born term infants were

recruited. The recruitment started in November 2002 and was

completed in May 2005. Eligibility criteria required that mothers

were fluent in Norwegian and a resident in the pertinent

geographic area.

After the informed consent forms were signed by the mothers,

containers for fecal samples and a questionnaire were provided to

the participants at the maternity ward. The mothers were asked to

collect and freeze one fecal sample from themselves at postpartum

day 4, as well as samples from their infants when they were 4, 10,

30, and 120 days old. Study personnel retrieved the fecal samples

and kept them frozen during transport to the Biobank of the

Norwegian Institute of Public Health, Oslo, where they were

stored at 220 C upon arrival. Further questionnaires were sent to

the families when their infants were aged 6, 12, 18, and 24 months.

Six hundred and one mothers agreed to participate in the

NOMIC study, however, 86 (14%) of these mothers never

returned any fecal samples, which left 524 infants with available

fecal samples from one or more occasions. Children that were

preterm (152) (defined as gestational age less than 253 days), term

children born via caesarean section (90), or term vaginally born

children who had been exposed to antibiotics before day 4 of life

(36), were then excluded from the current analysis, leaving 246

children.

Outcome
Mothers extracted information on weight from their ‘‘baby

health visit’’ cards and reported this information in questionnaires.

Information on gestational age and preterm delivery was obtained

from the Medical Birth Registry of Norway.

To be included in the analysis, we required birthweight and

another weight measurement within 122 to 244 days of birth

(approximately 4 to 8 months). These two measurements are

henceforth referred to as measurements at birth and approxi-

mately 6 months of life. If multiple measurements were available

during the latter period, the closest to 6 months was used. Data

from 218 children (110 females and 108 males) met the inclusion

criteria.

A child is expected to follow the percentile given by its birth

weight, which can be expressed as an age and sex standardised Z-

score. Following recommendations from the Norwegian Health

Directorate [14], we used the World Health Organisation’s

weight-for-age growth curves [15] to describe expected growth.

These sex-specific growth curves start with birthweight and

provide the percentile distribution of infant weights for infants

across ages. We generated sex standardised Z-scores for birth (Z0i)

and for six months of age (Z6i), and these Z-scores were compared.

The Z-scores were calculated at the time of measurement. We

chose approximately 6 months (instead of 12 or 24 months) as the

outcome because we had the most complete dataset at this time,

and reviews on rapid growth in early childhood failed to

differentiate any particular time point from 6 to 24 months as

clearly superior in predicting later obesity [13,16].

We defined the outcome of interest to be the difference in Z-

scores: Yi~Z6i{Z0i. This definition was chosen to be in

concordance with the current literature, where the most frequent

definition of rapid growth was a Z-score change in weight-for-age

[13]. If a child’s Z-score deviated between time periods, it was

indicative of deviant growth and labelled as either increased

growth (reaching higher weights than expected from its birth-

weight) or decreased growth (undershooting the target weight and

reaching lower weights than expected). If a child’s growth followed

the expected growth trajectory described by the WHO growth

curves, they would have an outcome of 0. As is often done in

studies focusing on growth of infants, we used the change in Z-

score threshold of 0.67 to define expected growth [13]. Thus

infants with a Z-score of between {0:67 and 0:67 are regarded to

be growing as expected.

The distribution of the difference in the estimated Z-scores was

found to be approximately Normally distributed, with a mean of

{0:29, median of {0:38, and IQR of {0:80 to 0:24 for females,

and a mean of {0:13, median of {0:18, and IQR of {0:82 to

0:57 for males. To aid in the interpretation of Z-scores, the

relationship (at different birth weights) between change in Z-score

and weight at six months is displayed in Figure 1. Table 1 contains

further descriptive characteristics of the study participants.

Exposures
The data in this study originated from a microarray dataset

previously published [17]. The probes were constructed based on

a limited 389 clone dataset [18] (constructed from DNA extracted

from the fecal samples obtained on days 4, 10, 30, and 120) and

subsequently evaluated on a 3845 clone dataset using Basic Local

Author Summary

Some obesity trajectories are set early in life, with rapid
weight gain being a risk factor for later development of
obesity. Recently, much attention has been given to
findings indicating that gut microbiota may play a role in
obesity development. The existence of time-dependent
exposure windows, which rely on stimuli from the gut to
initiate healthy development, gives the evolution of early
life gut microbiota a critical role in human health. We
identified children that followed their expected growth
trajectories at six months of life, and those that had
deviated. We then developed a novel statistical approach
that allowed the identification of longitudinal gut micro-
biota patterns (e.g. a particular species was detected at
days 4, 10, and 30 and not detected at day 120) that were
associated with expected growth, while appropriately
restricting the false discovery rate. We further identified
when a deviation from the proposed longitudinal gut
microbiota patterns would result in an abnormal growth
outcome (either rapid or decreased growth at six months
of life). We found developmental pathways of Staphylo-
coccus species and Escherichia coli that were associated
with expected growth, as well as indications that Bacte-
roides species at day 30 was associated with growth.

Early Gut Microbiota that Affect Infant Growth
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Alignment Search Tool (BLAST) [19] on a local database

containing the dataset. Detailed information about this process

can be found in a previous paper from the NOMIC study [17].

The exposures of interest are intensity readings for 22 probes,

encoding different gut microbiota species (spp.) groups at 4, 10, 30,

and 120 days since birth. The probes, labelling sequence, and

target bacteria spp. groups are displayed in Table 2. The

frequency of each probes detection, stratified by day and sex,

are shown in the SI as Table S1.

Each intensity reading at every time point is dichotomised into either

detected or non-detected. We selected this categorisation since we had

no information on the distributions of the different probes’ intensities in

the average population, i.e. it was not possible to choose appropriate

demarcations for low, moderate, or high levels.

Each microbiota spp. group were examined individually.

Confounders and effect modification
Information on potential confounders was obtained by ques-

tionnaires filled in by the mothers and from the Medical Birth

Registry of Norway. Variables considered a priori to be potential

confounders were antibiotics use (after day 4 of life), sex, having

received milk substitutes, maternal smoking, and parity, however,

stepwise regression procedures led to the removal of all considered

confounders due to a lack of effect.

After microbial exposures corresponding to altered growth were

identified, the distributions of birthweight, usage of the newborn

intensive care unit, preeclampsia, physician-diagnosed poor fetal

growth as reported by the mother, gestational age, and maternal

BMI were investigated with respect to microbial exposures, to identify

if the findings could have been influenced by these variables. Usage of

the newborn intensive care unit, preeclampsia, and poor fetal growth

were not initially investigated as potential confounders due to their low

prevalence in this subset, which prevented us from obtaining reliable

effect estimates when including them in any model.

When considering the relationship between microbes and

growth, our initial investigations found evidence for effect modifi-

cation by sex. This led us to perform separate stratified analyses.

Time-specific analyses
We were interested in identifying time points at which the

detection of specific gut microbiota spp. groups were significantly

associated with growth trajectory. That is, we investigated whether

we could identify any time points, where the detection of gut

microbiota spp. groups, shifted the growth outcome, the mean

change in Z-score. We modelled this relationship by including the

detection of gut microbiota at each time point (days 4, 10, 30, and

120) separately, using a standard linear regression model

(separately for every gut microbiota spp. group). Thus the linear

model constructed in our analysis is as follows:

Yi~b0,jk
zb1k

:Xi,4k
zb2k

:Xi,10k
zb3k

:Xi,30k
zb4k

:Xi,120k
zEi,jk

,

Figure 1. Theoretical description of the relationship between weight at six months and change in Z-score, as defined by the WHO
growth curves. The relationship is displayed for multiple birthweight percentiles. A change in Z-score of 0 corresponds to theoretically perfect
growth at six months. If a male child was born at the 75th percentile, then their expected weight at six months would be 8.5 kg (y-axis),
corresponding to 0 change in Z-score (x-axis) on the right panel. If the child instead weighed 9.0 kg at six months (y-axis), then that would
correspond to a z0:5 change in Z-score (x-axis).
doi:10.1371/journal.pcbi.1003042.g001

Table 1. Descriptive characteristics of study participants.

Characteristic Description

Z–score change . 0.67 (%) 16.7

Z–score change , 20.67 (%) 32.2

Maternal smokers (%) 11.5

Twins (%) 3.3

Siblings (%) 61.8

Birthweight (Kg) 3.58 (3.27, 3.88)

Gestational age (days) 284 (277, 288)

Maternal age (yrs) 30 (28, 33)

Maternal BMI 24 (21, 26)

Sample size 218

Statistics are displayed as median (IQR) or only %. Sex specific results were not
noticeably different from the above results.
doi:10.1371/journal.pcbi.1003042.t001

Early Gut Microbiota that Affect Infant Growth
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where Yi is the change in Z-score for the ith infant (i~1, . . . ,n),

and Xi,qk
denotes the detection of the kth gut microbiota spp.

group (k~1, . . . ,22) at the qth time point (q~4, 10, 30, and 120).

We tested for the significance of bik
using the mixed directional false

discovery rate (mdFDR) controlling method described in Guo et al.

(2010) [20]. We first tested at significance level of 5%. We then

repeated the analysis at 20% level of significance in order to identify

biologically interesting results that were not statistically significant at the

5% level of significance. Briefly summarising the method, we defined

Pik as the p-value for the test:

Hi
0k : bik

~0

Hi
1k : bik

=0
ð1Þ

for i~1, . . . , 4 and k~1, . . . , 22. We then treated H0j as the

intersection of all Hi
0k over i, and H1k as the union of all Hi

1k over i.

The following procedure was then undertaken:

1. The Benjamini-Hochberg method was applied at level a to test

H0k against H1k simultaneously for k~1, . . . , 22, based on the

Bonferroni pooled p-values Pk~mink(Pik)|4

2. R denotes the total number of null hypotheses rejected.

3. All bik
were tested, and Hi

0k was rejected with adjusted

significance level a�~a|R=(num tests)~0:05|R=(22|4)

Exposure patterns for a developing gut ecosystem
It is conceivable that, in an infant, it is not the effect of the gut

microbiota at a singular time point, but rather the gut ecosystem

developing over time, which influences growth. To capture this

evolution, it is possible to describe an infant’s exposure to gut

microbiota as a pattern over time. For example, one infant’s

pattern could be a gut microbiota spp. that is detected at days 4,

10, and 30, then non-detected at day 120. Each combination of

possible values of the gut microbiota (detected or not detected) at

different time points (4, 10, 30, 120 days) was considered to be a

pattern. All 16 possible patterns are displayed in Figure 2.

If a pattern was observed to occur less than 15% of the time, it

was not included as a testable pattern. Below 15% frequency we

did not have adequate power to warrant testing. Let mjk ,4 denote

the population mean for the growth outcome variable (change in

Z-scores, representing difference from expected growth) of infants

with pattern j, j~1, 2,::, 16 (where pattern j has 4 time points:

days 4, 10, 30 and 120) for the kth gut microbiota spp.,

k~1, 2,:::, 22. Let m̂mjk ,4 denote the estimate of mjk ,4 using the

sample mean and let se(m̂mjk ,4) denote the standard error associated

with the sample mean.

Using m̂mjk ,4 and se(m̂mjk ,4) for each pattern and gut microbiota

spp. group, we applied Tuke’s method [21] to test for equivalence

to zero:

H0 : Dmjk,4
D§E, Ew0

H1 : Dmjk,4
DvE

ð2Þ

where E was chosen to be 0:67, as mentioned previously. Our

analysis focused on attempting to identify a pattern which

corresponded to expected growth (Dmjk,4
Dv0:67) instead of a

Table 2. Probes and their targets.

# Probe match Labeling

1 Enterococcus spp. TCATCCCTTGACGGTATCTAA

2 Lactobacillus spp. GTCAAATAAAGGCCAGTTACTA

3 Lactobacillus paracasei/casei CAGTTACTCTGCCGACCATT

4 Staphylococcus spp. ACACATATGTTCTTCCCTAATAA

5 Streptococcus spp. AGTGTGAGAGTGGAAAGTTCA

6 Clostridium spp. TCAACTTGGGTGCTGCATTC

7 Lachnospiraceae spp. AGCTAGAGTGTCGGAGAGG

8 Veillonella spp. GATTGGCAGTTTCCATCCCAT

9 Lachnospiraceae spp. TATCAGCAGGAAGATAGTGA

10 Lachnospiraceae spp. AGTCAGGTACCGTCATTTTCT

11 Lachnospiraceae spp. ACTGCTTTGGAAACTGCAGAT

12 Pseudomonas spp. GTAGAGGGTGGTGGAATTTC

13 Escherichia coli GAGCAAAGGTATTAACTTTACTC

14 Enterobacteriaceae other than E. coli CGAAACTGGCAGGCTAGAGT

15 Gammaproteobacteria CCTGGACAAAGACTGACGCT

16 Varibaculum spp. TTGAGTGTAGGGGTTGATTAG

17 Bifidobacterium longum including subsp. infantis GAGCAAGCGTGAGTAAGTTTA

18 Bifidobacterium bifidum CCGAAGGCTTGCTCCCAAA

19 Bifidobacterium breve CACTCAACACAAAGTGCCTTG

20 Bifidobacterium spp. GCTTATTCGAAAGGTACACTCACCCCGAAGGG

21 Bacteroides fragilis GGGCGCTAGCCTAACCAG

22 Bacteroides spp. ATGCATACCCGTTTGCATGTA

The probe matches were taken from a previous paper [17].
doi:10.1371/journal.pcbi.1003042.t002
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comparison analysis (e.g. pattern 4 compared to pattern 1 has an

odds ratio of 2 for expected growth versus unexpected growth) for

two reasons. Firstly, we believed that the former concept was more

clinically useful and interesting than the latter. Secondly, we were

unable to easily select an appropriate reference pattern (from those

displayed in Figure 2) as multiple testing issues and concerns of

model overfitting arose when considering multiple rounds of

model fitting to identify the most appropriate reference patterns

(e.g. the pattern with the most extreme growth).

In this analysis, we were concerned with identifying which gut

microbiota spp. group patterns corresponded to a mean change in

Z-score that was significantly close to zero (i.e. did not deviate

from expected growth). This is in contrast to the previous time-

specific analysis, which was focused on the relative shift in change

in Z-score, when the exposure was either present of absent.

Similar to the previous analysis, we applied the mdFDR

controlling method of Guo et al. (2010) at a rate of 0.05 [20].

Once we identified a significant pattern (i.e. one where

Dmjk ,4Dv0:67), we tested to see if some time points might be

superfluous and not adding information; for example, it may be

that only the first 30 days of exposure that affect growth, so the

last time point (day 120) would not be relevant and could be

removed from the pattern. From the mixed directional false

discovery rate controlling method [20], each four time point

pattern was tested at an adjusted significance level of a�; if the p-

value of pattern jk,4 (Pjk,4
) was less than a�=2 then (by using a

Bonferroni adjustment) we had the opportunity to perform an

additional test to pattern jk,4 without risk of losing the significant

result for the four time point pattern.

That is, consider the p-values of the patterns jk,4, jk,4 without

day 120 (jk,3), jk,4 without days 30 and 120 (jk,2), and jk,4 without

days 10, 30, and 120 (jk,1), to be denoted as Pjk,4
, Pjk,3

, Pjk,2
, and

Pjk,1
, respectively. The following procedures were performed after

finding a four time point pattern jk,4 whose mean is significantly

close to zero:

1. If Pjk,4
va�=2, then jk,3 was tested at significance level a�=2

2. If Pjk,3
va�=3, then jk,2 was tested at significance level a�=3

3. If Pjk,2
va�=4, then jk,1 was tested at significance level a�=4

The process ended when a pattern’s mean was either not

significantly close to zero, or when Pjk,q
(q~1, . . . , 4) was not large

enough to allow continued testing. This process controlled the false

discovery rate, while simultaneously ensuring that no significant finding

was subsequently lost by the additional testing to remove superfluous

time points. A short proof, that this adaptation still retains control of the

false discovery rate, is provided in the SI. By implementing this

adaptation, the resultant hypotheses of interest were:

H0 : min Dmjk,4
D, Dmjk,3

D, Dmjk,2
D, Dmjk,1

D
� �

§0:67

H1 : min Dmjk,4
D, Dmjk,3

D, Dmjk,2
D, Dmjk,1

D
� �

v0:67

The data reduction process was only considered from the right side of

the pattern to avoid confounding. By definition, a confounder must

affect both the exposure and outcome, and it is not possible for an

exposure at day 120 to affect the exposure between days 4 and 30. In

contrast, an exposure at day 4 may influence the exposure at day 10,

and is therefore a possible confounder. We stress that, by only

undertaking this process on the right side of the pattern, we do not

imply that the right side of the pattern is less important. Instead, we

view the process as adding information where possible (by culling

superfluous points on the right side of the pattern) and leaving the

pattern otherwise alone.

Post-hoc screening of results
If a pattern was found to have its mean significantly close to zero

(i.e. the null hypothesis in (2) is rejected), the mean of the pattern’s

Figure 2. All possible exposure patterns in the data. ‘‘z’’ and ‘‘{’’ represent detection and non-detection respectively. For example,
pattern 8 indicates detection at day 4, followed by non-detection at days 10, 30, and 120.
doi:10.1371/journal.pcbi.1003042.g002

Early Gut Microbiota that Affect Infant Growth
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crude contrast (i.e. if detection at days 4 and 10 was significant, the

crude contrast would be non-detection at days 4 and 10) was tested

for difference to zero, using a t-test at a~5%. If the crude contrast

was not found to be significantly different from zero, the pattern

was discarded from the significant findings. In the event of a

significant crude contrast, a Welch two sample t-test was

performed to test if the means of the pattern and crude contrast

differed from each other. This test was performed at a significance

level of a~10% due to the decrease in sample size (and hence

power) when only considering the set of infants with either the

pattern of interest or the crude contrast. Tests found to be

significant at a~5% were noted as such.

Results/Discussion

We applied the methods (listed above) to each gut microbiota

spp. group in Table 2 and displayed significant time-specific results

(from standard linear regressions) in Figure 3 and pattern results

(from our novel method) in Figure 4.

In the time-specific analyses, with a false discovery rate of 5%

applied, we found the detection of Bacteroides spp. (Probe 22) at day

30 to be significantly associated with reducing growth in males,

when compared to non-detection (Figure 3). The current literature

shows that Bacteroides spp. is protective against obesity [22].

In the pattern analyses, we note that the detection of

Staphylococcus spp. (Probe 4) at day 4 was associated with expected

growth in females and males (Figure 4). 98 males (96%) and 94

females (91%) had detectable levels of Staphylococcus spp. (Probe 4)

at day 4. The literature highlights that colonisation of Staphylococcus

spp. is a normal feature of healthy gut flora [23]. We also found

that Escherichia coli (Probe 13) detection from day 4 through to 30

was associated with expected growth in males (Figure 4), which

occurred in 75 (77%) of the males. The current literature indicates

that colonisation of Escherichia coli is a normal feature of healthy gut

flora development [24].

We are careful to refer to our exposures as ‘‘detected’’ and ‘‘not-

detected’’, and never as ‘‘present’’ and ‘‘absent’’. This is because

our detection limits for the different bacteria are likely very

different, and therefore such references would be inappropriate,

even though we are using detected/not-detected as a proxy for

present/absent. Higher (and varying) detection limits results in

misclassification of the exposure, and biases our results towards the

null. This does not invalidate our findings, but did reduce our

ability to identify additional significant findings.

We were concerned that our pattern analysis findings were

caused by confounding that occurred before four days of life.

When comparing infants with detected Staphylococcus spp. (Probe 4)

at day 4 to those without, we found evidence that males with non-

detected Staphylococcus spp. (Probe 4) at day 4 had lower

birthweight (mean 3.19 Kg vs 3.58 Kg) and higher proportion

of usage of the newborn intensive care unit, (25% vs 6%), however,

these findings were inverted in the female stratum (3.68 Kg vs

3.55 Kg and 0% vs 5%), and we therefore found no conclusive

evidence of confounding. We also found no noticeable differences

in the rates of preeclampsia, poor fetal growth, gestational age, or

maternal BMI. No noticeable differences were found in any of the

above variables when checking for confounding in Escherichia coli

(Probe 13).

While our outcome was focused on investigating growth in the

first six months of life, the growth rate of a child is set in different

phases during life, including in utero [16]. As we found no

evidence of confounding by physician-diagnosed poor fetal

growth, we were not concerned with issues pertaining to in utero

growth. While we had data on growth at 6, 12, and 24 months, we

ultimately chose approximately 6 months as the outcome as we

had the most complete dataset at this time, and reviews on rapid

growth in early childhood failed to differentiate any time point

between 6 to 24 months as clearly superior [13,16].

Confounding by race and ethnicity was not considered due to

the low proportion of non-ethnically Norwegian mothers in the

study (11% in the subset used for the analysis). Duration of

exclusive breastfeeding was evaluated with our surrogate variable,

‘‘use of milk substitutes.’’ This was not found to be an important

confounder, probably due to the long length of average

breastfeeding in Norway (greater than one year; only 33% of the

subset used for the analysis had used one or more milk substitutes

before day 30).

By investigating one overarching theme (‘‘how does the gut

microbiota affect infant growth?’’) through two different questions,

we obtained two different set of results. We note that these two set

of results are not mutually exclusive, nor contrasting in nature.

Instead they offer different perspectives: the time-specific analysis

aids in highlighting where gut microbiota has an association with

the mean of the outcome, which is useful in situations where the

outcome is shifted away from 0 and it is hard to find a true

‘‘healthy reference group’’. The pattern analysis is useful in

identifying how the gut microbiota develops over time in babies

with expected growth (i.e. we found that Escherichia coli (Probe 13)

detection from day 4 through to 30 was associated with expected

growth in males). This allowed us to combine a number of

exposures over time, which, when viewed together, formed a

cohesive message about the outcome. The message was that

certain patterns corresponded to expected growth, and deviation

from those patterns was associated with not achieving expected

growth – instead of only identifying singular gut microbiota

exposures that shifted growth.

It is important to note that as no contrasts (beyond the crude

contrasts) were compared to the ‘‘expected growth’’ pattern, we

cannot make inferences about the association between expected

growth and patterns that are partially different from the ‘‘expected

growth’’ pattern. We can only assert that the presence of particular

exposure patterns are associated with expected growth, and that

they significantly differed from their crude contrasts (which were

also significantly different from expected growth).

When considering the application of the pattern analysis

method to other analyses, it is important to note that it cannot

account for confounding. We propose that in situations where

confounding variables are at work, the above method be used to

extract a plausible reference pattern, and then a traditional logistic

regression strategy should be implemented to address confound-

ing. This process of reference pattern selection adds value to the

current methodology literature, as it enables the transparent

selection of a sensible reference pattern in scenarios (such as the

one above) where it is not a simple matter to select a baseline a

priori. In addition, other analyses may contain a multitude of time

points, which would make the current strategy of creating

longitudinal patterns unfeasible. In such situations, it would be

advisable to ‘‘bin’’ similar time points to reduce the complexity of

the dataset, and then apply our procedure in an attempt to identify

binned time points that are interesting. Once such binned time

points are identified, the method can be reapplied in the original

data, restricted to the time points of interest. There are no issues

with including more taxa, as the method is applied to each taxon

independently. In addition, reference patterns are only considered

when they have high frequencies and abnormal conditions are by

definition less common. It is therefore necessary to ‘‘search’’ for a

healthy common reference pattern and then test to see if deviating

from the healthy reference (i.e. the crude contrast) results in illness.
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In certain situations, the outcome may be dependent on the

interaction between two gut microbiota spp. groups, which would

result in the above method not being appropriate without an extension.

By creating patterns consisting of two – or more – gut microbiota spp.

groups, and then applying the methods described here, the intra-gut

microbiota spp. group dependencies can be accounted for.

Figure 3. Results from the time-specific analyses for males. Coloured areas indicate significant results at 20% false discovery rate, and are
labelled with their effect estimates, while white areas indicate non-significant results. Significant results at 5% false discovery rate are indicated by �.
Only the results for males are displayed, as no significant results were found for females.
doi:10.1371/journal.pcbi.1003042.g003
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As with all methods, we are limited by the granularity of our

longitudinal observations and the observational nature of our data.

Our method identifies time-dependent points that may contain

information about potential time-dependent exposure windows

that are reflected in the observed data. That is, if one assumes

there is a time-dependent exposure window requiring a microbe to

be detected between 100–110 days, but the microbe does not

simply dissipate from the body at day 111, so a strong relationship

exists between day 110 and 120, then the method will identify a

time-dependent point at day 120 (reflecting the time-dependent

exposure window at days 100–110). This is simply a feature of the

data, and the length of time surrounding each time-dependent

exposure window when it is reflected in the data (i.e. when the

microbes remain similar) may vary from microbe to microbe and

be dependent on the situation at hand.

The only way to prove that a time-dependent exposure window

has occurred is through experiments. Using observational data,

our method provides a novel way to describe potential time-

dependent exposure windows that may have been reflected into

the observable data. These descriptions can be further used to

create time-dependent hypotheses for experiments concerned with

the existence of time-dependent exposure windows. Furthermore,

we highlight that our statistical methods were designed to control

the false discovery rate, over a large number of tests. In doing so, it

is likely that we discarded a number of clinically significant

findings that were not found to be statistically significant. We

therefore make no claims about the gut microbiota spp. groups

that were not found to have any significant results, as the absence

of evidence is not evidence of absence.

Our outcome (the difference in Z-scores of weight-for-age for

approximately 6 months versus birth) was not centred around 0

(mean/median of {0:29={0:38 and {0:13={0:18 for females

and males respectively), which raised concerns that our weight-for-

age variable was perhaps inappropriate, and that a measure that

also included length might be more appropriate. We investigated

the larger Norwegian Human Milk Study cohort (n = 3529), of

which NOMIC is a subsample [25]. We found that the median

weight-for-age Z-score at birth was 0.76, decreasing to 0.31 at

approximately 6 months of life, while the median weight-for-

length Z-score at birth was 0.63, decreasing to 0.06 at

approximately 6 months. This suggests that the Norwegian infants

were born with more mass than one would expect for their

appropriate length, and both weight-for-age and weight-for-length

measures show similar trends.

These findings from the larger Norwegian Human Milk Study

cohort were similar to what we found in NOMIC. Similar results

have been shown in the Norwegian Medical Birth Registry, where

it has been found that from the early 1970s to the late 1990s the

birthweight of Norwegian infants has been increasing [26]. These

findings strengthen the recommendations from the Norwegian

Health Directorate to use the World Health Organization’s

growth curves [14]. It is also worth noting that because the female

distribution is centred so far from zero (mean/median of

{0:29={0:38), we lack power when detecting gut microbiota

patterns that results in a positive change in Z-score. Furthermore,

our ‘‘approximately 6 months’’ Z-score was calculated as the

closest observed Z-score to 6 months, within 4–8 months. This

implies an inherent assumption that the growth velocity of the

Figure 4. Results from the pattern analysis. The exposure pattern is represented by four characters, constructed from ‘‘z’’, ‘‘{’’, and ‘‘X’’, which
represent detection, non-detection, and irrelevance, respectively, for the four time points of the analysis (days 4, 10, 30, and 120). The black points
and lines represent estimated means and 95% confidence intervals for patterns that were found to be significantly close to zero at an false discovery
rate of 5%. The crude contrasts (i.e. if ‘‘z{XX’’ was significant, the crude contrast would be ‘‘{zXX’’) that were significantly different to zero at
a~5% have their estimated means and 95% confidence intervals displayed in red. For the testing of the difference of the means of the two patterns,
significant results (at a~5%) is indicated by �, otherwise significance is a~10%. Vertical lines are displayed at {0:67 and 0:67, representing the
boundaries of expected growth.
doi:10.1371/journal.pcbi.1003042.g004
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child at the observed time point (between 4–8 months) is not

different to that of the child at 6 months. This assumption may

over or under-estimate the growth velocity, however, it will do so

entirely at random (with regards to the exposure) and therefore

will only bias the results towards the null, and does not invalidate

our findings.

Our results expand on the current literature relating gut

microbiota to growth, in both methodology and biological

findings. With regards to methodology, we developed a novel

method to analyse longitudinal data that contains information

about the development of an ecosystem over time. Crucially, this

method controls the false discovery rate associated with multiple

levels of multidimensional testing. We expanded the biological

literature by reporting time-dependent patterns associated with

expected growth, which, in some cases, confirmed the importance

of gut microbiota spp. groups previously reported on.
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